• Title/Summary/Keyword: Constrained model based predictive control

Search Result 23, Processing Time 0.028 seconds

Control of Two-Link Manipulator Via Feedback Linearization and Constrained Model Based Predictive Control

  • Son, Won-Kee;Park, Jin-Young;Ryu, Hee-Seb;Kwon, Oh-Kyu
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.2 no.4
    • /
    • pp.221-227
    • /
    • 2000
  • This paper combines the constrained model predictive control with the feedback linearization to solve a nonlinear system control problem with input constraints. The combined approach consists of two steps: Firstly, the nonlinear model is linearized by the feedback linearization. Secondly, based on the linearized model, the constrained model predictive controller is designed taking input constraints into consideration. The proposed controller is applied to two link robot system, and tracking performances of the controller are investigated via some simulations, where the comparisons are done for the cases of unconstrained, constrained input in feedback linearization.

  • PDF

Constrained multivariable model based predictive control application to nonlinear boiler system (제약조건을 갖는 다변수 모델 예측 제어기의 비선형 보일러 시스템에 대한 적용)

  • 손원기;이명의;권오규
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.160-163
    • /
    • 1996
  • This paper deals with MCMBPC(Multivariable Constrained Model Based Predictive Controller) for nonlinear boiler system with noise and disturbance. MCMBPC is designed by linear state space model obtained from some operating point of nonlinear boiler system and Kalman filter is used to estimate the state with noise and disturbance. The solution of optimization of the cost function constrained on input and/or output variables is achieved using quadratic programming, viz. singular value decomposition (SVD). The controller designed is shown to have excellent tracking performance via simulation applied to nonlinear dynamic drum boiler turbine model for 16OMW unit.

  • PDF

The devlepment of a MPC controller for water level control in the steam generator of a nuclear power plant (원전 증기발생기 수위제어를 위한 MPC 제어기 개발)

  • 손덕현;한진욱;이환섭;이창구
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.359-359
    • /
    • 2000
  • Generally, level control in the steam generator of a nuclear power plant is difficulty process control, because the low power operating can lead nonminimum phase characteristics(swell and shrink phenomenon) and flow measurement are unreliable and nonlinear characteristics. This paper presents a framework for solving this problem based on the constrained linear model predictive control and introduces the design of method for the level of the controller in the entire operating power of the steam generator, and compares with conventional PI controller.

  • PDF

Model Predictive Control for Input Constrained Systems with Time-varying Delay (시변 시간지연을 가지는 입력제한 시스템의 모델예측제어)

  • Lee, S.M.
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.7
    • /
    • pp.1019-1023
    • /
    • 2012
  • This paper considers a model predictive control problem of discrete-time constrained systems with time-varying delay. For this problem, a delay dependent state feedback control approach is used to achieve asymptotic stabilization of systems with input constraints. Based on Lyapunov stability theory, a new stability condition is obtained via linear matrix inequality formulation to find cost monotonicity condition of the model predictive control algorithm which guarantee the closed loop stability. Finally, the proposed method is applied to a numerical example in order to show the effectiveness of our results.

Multivariable constrained model-based predictive control with application to boiler systems (제약조건을 갖는 다변수 모델 예측제어기의 보일러 시스템 적용)

  • Son, Won-Gi;Gwon, O-Gyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.6
    • /
    • pp.582-587
    • /
    • 1997
  • This paper deals with the control problem under nonlinear boiler systems with noise, and input constraints. MCMBPC(Multivariable Constrained Model-Based Predictive Controller) proposed by Wilkinson et al.[10,11] is used and nominal model is modified in this paper in order to applied to nonlinear boiler systems with feed-forward terms. The solution of the cost function optimization constrained on input and/or output variables is achieved using quadratic programming, via singular value decomposition(SVD). The controller designed is shown to satisfy the constraints and to have excellent tracking performance via simulation applied to nonlinear dynamic drum boiler turbine model for 16OMW unit.

  • PDF

Robust Predictive Control of Uncertain Nonlinear System With Constrained Input

  • Son, Won-Kee;Park, Jin-Young;Kwon, Oh-Kyu
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.4 no.4
    • /
    • pp.289-295
    • /
    • 2002
  • In this paper, a linear matrix inequality(LMI)-based robust control method, which combines model predictive control(MPC) with the feedback linearization(FL), is presented for constrained nonlinear systems with parameter uncertainty. The design procedures consist of the following 3 steps: Polytopic description of nonlinear system with a parameter uncertainty via FL, Mapping of actual input constraint by FL into constraint on new input of linearized system, Optimization of the constrained MPC problem based on LMI. To verify the performance and usefulness of the control method proposed in this paper, some simulations with application to a flexible single link manipulator are performed.

Fuzzy Model Based Generalized Predictive Control for Nonlinear System (비선형 시스템을 위한 퍼지모델 기반 일반예측제어)

  • Lee, Chul-Heui;Seo, Seon-Hak
    • Proceedings of the KIEE Conference
    • /
    • 2000.11d
    • /
    • pp.697-699
    • /
    • 2000
  • In this paper, an extension of model predictive controller for nonlinear process using Takagi-Sugeno(TS) fuzzy model is proposed Since the consequent parts of TS fuzzy model comprise linear equations of input and output variables. it is locally linear, and the Generalized Predictive Control(GPC) technique which has been developed to control Linear Time Invariant(LTI) plants, can be extended as a parallel distributed controller. Also fuzzy soft constraints are introduced to handle both equality and inequality constraints in a unified form. So the traditional constrained GPC can be transferred to a standard fuzzy optimization problem. The proposed method conciliates the advantages of the fuzzy modeling with the advantages of the constrained predictive control, and the degree of freedom is increased in specifying the desired process behavior.

  • PDF

Neural model predictive control for nonlinear chemical processes (비선형 화학공정의 신경망 모델예측제어)

  • 송정준;박선원
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.490-495
    • /
    • 1992
  • A neural model predictive control strategy combining a neural network for plant identification and a nonlinear programming algorithm for solving nonlinear control problems is proposed. A constrained nonlinear optimization approach using successive quadratic programming cooperates with neural identification network is used to generate the optimum control law for the complicate continuous/batch chemical reactor systems that have inherent nonlinear dynamics. Based on our approach, we developed a neural model predictive controller(NMPC) which shows excellent performances on nonlinear, model-plant mismatch cases of chemical reactor systems.

  • PDF

Attitude Control of Planar Space Robot based on Self-Organizing Data Mining Algorithm

  • Kim, Young-Woo;Matsuda, Ryousuke;Narikiyo, Tatsuo;Kim, Jong-Hae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.377-382
    • /
    • 2005
  • This paper presents a new method for the attitude control of planar space robots. In order to control highly constrained non-linear system such as a 3D space robot, the analytical formulation for the system with complex dynamics and effective control methodology based on the formulation, are not always obtainable. In the proposed method, correspondingly, a non-analytical but effective self-organizing modeling method for controlling a highly constrained system is proposed based on a polynomial data mining algorithm. In order to control the attitude of a planar space robot, it is well known to require inputs characterized by a special pattern in time series with a non-deterministic length. In order to correspond to this type of control paradigm, we adopt the Model Predictive Control (MPC) scheme where the length of the non-deterministic horizon is determined based on implementation cost and control performance. The optimal solution to finding the size of the input pattern is found by a solving two-stage programming problem.

  • PDF

Input Constrained Robust Model Predictive Control with Enlarged Stabilizable Region

  • Lee, Young-Il
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.3
    • /
    • pp.502-507
    • /
    • 2005
  • The dual-mode strategy has been adopted in many constrained MPC (Model Predictive Control) methods. The size of stabilizable regions of states of MPC methods depends on the size of underlying feasible and positively invariant sets and the number of control moves. The results, however, may perhaps be conservative because the definition of positive invariance does not allow temporal departure of states from the set. In this paper, a concept of periodic invariance is introduced in which states are allowed to leave a set temporarily but return into the set in finite time steps. The periodic invariance can be defined with respect to sets of different state feedback gains. These facts make it possible for the periodically invariant sets to be considerably larger than ordinary invariant sets. The periodic invariance can be defined for systems with polyhedral model uncertainties. We derive a MPC method based on these periodically invariant sets. Some numerical examples are given to show that the use of periodic invariance yields considerably larger stabilizable sets than the case of using ordinary invariance.