• Title/Summary/Keyword: Constellation Rotation

Search Result 29, Processing Time 0.021 seconds

Non-Orthogonal Multiple Access based Phase Rotation Index Modulation (비직교 다중 접속 기반 위상 회전 인덱스 변조 기법)

  • Lee, Hye Yeong;Shin, Soo Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.2
    • /
    • pp.267-273
    • /
    • 2021
  • Non-orthogonal multiple access is the promised candidates in the next generation wireless networks to improve the spectral efficiency by superposing multiple signals. In general, the superposition coding is performed using the difference in channel gain between users based on the user's power allocation. However, when user pairs have the similar channel gain problem, NOMA can not be allowed in the scenario. To overcome this problem, phase rotation based NOMA is presented to increase minimum distance between superposed signals in the constellation point. This paper proposed a novel non-orthogonal multiple access based index modulation using phase rotation. The additional bits can transfer using the index bits that is allocated according to the activated state of the phase rotation. Simulation results are shown that bit error rate and achievable sum rate are better than conventional NOMA.

Synchronization for Wireless LAN System Using OFDM Technique (OFDM 방식을 이용한 무선 LAN 시스템의 동기)

  • Yun, Kyung-Seok;Choi, Seung-Kuk
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.1B
    • /
    • pp.79-89
    • /
    • 2002
  • A synchronization method is presented for IEEE 802.11a wireless OFDM system. First the coarse symbol synchronization is achieved by measuring the moving power average of the received envelope signal. The detection probabilities and optimum thresholds for the symbol synchronization are derived. By measuring the correlation between the short training signal and received envelope signal, fine symbol synchronization can be acquired. And the frequency synchronization is achieved using long training signal. A symbol synchronization error causes a phase rotation of the constellation. After the compensation for fading channel, the rotation due to the symbol timing error can be corrected. With this method, synchronization can be well achieved over frequency selective channels.

Double Quadrature Spatial Modulation

  • Holoubi, Tasnim;Murtala, Sheriff;Muchena, Nishal;Mohaisen, Manar
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.11 no.3
    • /
    • pp.27-33
    • /
    • 2019
  • Quadrature spatial modulation (QSM) utilizes the in-phase and quadrature spatial dimensions to transmit the real and imaginary parts, respectively, of a single signal symbol. Improved QSM (IQSM) builds upon QSM to increase the spectral efficiency by transmitting the real and imaginary parts of two signal symbols using antenna combinations of size of two. In this paper, we propose a double QSM (DQSM) scheme that transmits the real and imaginary parts of two signal symbols independently through any of the transmit antennas. The two signal symbols are drawn from two different constellations of the same size with the first symbol drawn from any of the conventional modulation sets while the second is drawn from an optimally rotated version of the first constellation. The optimum rotation angle is obtained through extensive Monte Carlo simulations to minimize the bit error rate (BER) of the system. Simulation results show that for a given spectral efficiency, DQSM performsrelatively close to IQSM while requiring a smaller number of transmit antennas, and outperformsIQSM by up to 2 dB when the same number of antennas are used.

A Study on the Complex-Channel Blind Equalization Using ITL Algorithms

  • Kim, Nam-Yong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.8A
    • /
    • pp.760-767
    • /
    • 2010
  • For complex channel blind equalization, this study presents the performance and characteristics of two complex blind information theoretic learning algorithms (ITL) which are based on minimization of Euclidian distance (ED) between probability density functions compared to constant modulus algorithm which is based on mean squared error (MSE) criterion. The complex-valued ED algorithm employing constant modulus error and the complex-valued ED algorithm using a self-generated symbol set are analyzed to have the fact that the cost function of the latter forces the output signal to have correct symbol values and compensate amplitude and phase distortion simultaneously without any phase compensation process. Simulation results through MSE convergence and constellation comparison for severely distorted complex channels show significantly enhanced performance of symbol-point concentration with no phase rotation.

Quasi-Orthogonal STBC with Iterative Decoding in Bit Interleaved Coded Modulation

  • Sung, Chang-Kyung;Kim, Ji-Hoon;Lee, In-Kyu
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.4A
    • /
    • pp.426-433
    • /
    • 2008
  • In this paper, we present a method to improve the performance of the four transmit antenna quasi-orthogonal space-time block code (STBC) in the coded system. For the four transmit antenna case, the quasi-orthogonal STBC consists of two symbol groups which are orthogonal to each other, but intra group symbols are not. In uncoded system with the matched filter detection, constellation rotation can improve the performance. However, in coded systems, its gain is absorbed by the coding gain especially for lower rate code. We propose an iterative decoding method to improve the performance of quasi-orthogonal codes in coded systems. With conventional quasi-orthogonal STBC detection, the joint ML detection can be improved by iterative processing between the demapper and the decoder. Simulation results shows that the performance improvement is about 2dB at 1% frame error rate.

A new dual-mode blind equalization algorithm combining carrier phase recovery (반송파 위상 복원을 결합한 새로운 이중모드 블라인드 등화 알고리즘)

  • 오길남;진용옥
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.5
    • /
    • pp.14-23
    • /
    • 1995
  • A new dual-mode algorithm for blind equalization of quadrature amplitude modulation (QAM) signals is proposed. To solve the problem that the constant modulus algorithm (CMA) converges to the constellation with the arbitrary phase rotation, with the modification of the CMA, the proposed algorithm accomplishes blind equalization and carrier phase recovery simultaneously. In addition, the dual-mode algorithm combining the modified constant modulus algorithm (MCMA) with decision-directed (DD) algorithm achieves the performance enhancement of blind convergence speed and steady-state residual ISI. So we can refer the proposed algorithm to as a scheme for joint blind equalization and carrier phase recovery. Simulation results for i.i.d. input signals confirm that the dual-mode algorithm results in faster convergence speed, samller residual ISI, and better carrier phase recovery than those of the CMA and DD algorithm without any significant increase in computational complexity.

  • PDF

Full-Diversity High-Rate STBC for 2 and 4 Transmitted Antennas (2,4개 전송 안테나를 위한 완전 다이버시티 고 부호율 STBC)

  • Yan, Yier;Lee, Moon-Ho;Ma, Yizhou
    • Proceedings of the KIEE Conference
    • /
    • 2007.04a
    • /
    • pp.295-297
    • /
    • 2007
  • We design a new rate-3/2 full-diversity orthogonal space-time block code (STBC) for QPSK and 2 transmit antennas (TX) and 4 transmit antennas (TX) by enlarging the signalling set from the set of quaternions used in the Alamouti[I] and extendedcode and using additional members of the set of orthogonal matrices or Quasi-orthogonal matrices and higher than rate-5/4. Selective power scaling of information symbols is used to guarantee full-diversity while maximizing the coding gain (CG) and minimizing the transmitted signal peak-to-minimum power ratio (PMPR). The optimum power scaling factor is derived analytically and shown to outpetform schemes based only on constellation rotation while still enjoying a low-complexity maximum likelihood (ML) decoding algorithm.

  • PDF

Performance Analysis of Rotation-lock Differential Precoding Scheme (회전로크 구조의 차분 선부호화 기법의 성능 분석)

  • Kim, Young Ju
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.4
    • /
    • pp.9-16
    • /
    • 2013
  • Long term evolution (LTE) and LTE-Advanced (LTE-A) systems adopt closed-loop multiple-input multiple-output antenna techniques. Equal gain transmission which has equal gain property is the key factor in their codebook design. In this paper, a novel differential codebook structure which maintains the codebook design requirements of LTE or LTE-A systems. Especially, eight-phase shift keying (8-PSK) constellations are used as elements of codewords, which not only maintain equal gain property but also reduce the computation complexity of precoding and decoding function blocks. The equal gain property is very important to uplink because the performance of uplink is very sensitive to the peak-to-average power ratio (PAPR). Moreover, the operation of the proposed differential codebook is explained as a rotation-lock structure. As the results of computer simulations, the steady-state throughput performance of the proposed codebook shows at least 0.9dB of SNR better than those of the conventional LTE codebook with the same amount of feedback information.

A Modulation and Channel State Estimation Algorithm Using the Received Signal Analysis in the Blind Channel (블라인드 채널에서 수신 신호 분석 기법을 사용한 변조 및 채널 상태 추정 알고리즘)

  • Cho, Minhwan;Nam, Haewoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.11
    • /
    • pp.1406-1409
    • /
    • 2016
  • In this paper, we propose the heuristic signal grouping algorithm to estimate channel state value over full blind communication situation which means that there is no information about the modulation scheme and the channel state information between the transmitter and the receiver. Hereafter, using the constellation rotation method and the probability density function(pdf) the modulation scheme is determined to perform automatic modulation classification(AMC). Furthermore, the modulation type and a channel state value estimation capability is evaluated by comparing the proposed scheme with other conventional techniques from the simulation results in terms of the symbol error rate(SER) and the root mean square error (RMSE).

Coded Layered Space-Time Transmission with Signal Space Diversity in OFDM Systems (신호 공간 다이버시티 기법을 이용한 OFDM 기반의 부호화된 시공간 전송기법)

  • Kim, Ji-Hoon;Lee, In-Kyu
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.7C
    • /
    • pp.644-651
    • /
    • 2007
  • In multiple antenna systems, vertical Bell Labs Layered Space-Time (V-BLAST) systems enable very high throughput by nulling and cancelling at each layer detection. In this paper, we propose a V-BLAST system which combines with signal space diversity technique. The benefit of the signal space diversity is that we can obtain an additional gain without extra bandwidth and power expansion by applying inphase/quadrature interleaving and the constellation rotation. Through simulation results, it is shown that the performance of the proposed system is less than 0.5dB away from the ideal upper bound.