• Title/Summary/Keyword: Constant volume method

Search Result 406, Processing Time 0.035 seconds

STUDY ON PRE-MIXTURE COMBUSTION IN A SUB-CHAMBER TYPE CVC WITH MULTIPLE PASSAGE HOLES

  • PARK J. S.;YEOM J. K.;LEE T. W.;HN J. Y.;CHUNG S. S.
    • International Journal of Automotive Technology
    • /
    • v.7 no.1
    • /
    • pp.17-23
    • /
    • 2006
  • An experimental study was carried out to obtain the fundamental data about the effect of sub-chamber on pre-mixture combustion. A eve (constant volume combustor) divided into a sub-chamber and a main chamber was used in this experiment. The volume of the sub-chamber was varid trom $0.45\%$ to $1.4\%$ about the whole combustion chamber. The sub-chamber has twelve narrow radial passage holes and a spark plug to ignite the pre-mixture. As the ignition occurs in the sub-chamber by a spark discharge, burned and unburned gas including a great number of radicals is injected into the main chamber, then the multi-point ignition occurs in the main chamber. The combustion pressure is measured to calculate the burning velocity mainly as a function of the sub-chamber volume, the diameter of the passage holes, and the equivalence ratio. In the case of RI (radical ignition) methods, the overall burning time became very short and the maximum burning pressure was slightly increased as compared with that of SI (spark ignition) method. The optimum design value of the sub-chamber is near 0.11 $cm^{-l}$ in the ratio of total area of holes to the sub-chamber volume.

Development of 3D Mapping Algorithm with Non Linear Curve Fitting Method in Dynamic Contrast Enhanced MRI

  • Yoon Seong-Ik;Jahng Geon-Ho;Khang Hyun-Soo;Kim Young-Joo;Choe Bo-Young
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.9 no.2
    • /
    • pp.93-102
    • /
    • 2005
  • Purpose: To develop an advanced non-linear curve fitting (NLCF) algorithm for dynamic susceptibility contrast study of brain. Materials and Methods: The first pass effects give rise to spuriously high estimates of $K^{trans}$ in voxels with large vascular components. An explicit threshold value has been used to reject voxels. Results: By using this non-linear curve fitting algorithm, the blood perfusion and the volume estimation were accurately evaluated in T2*-weighted dynamic contrast enhanced (DCE)-MR images. From the recalculated each parameters, perfusion weighted image were outlined by using modified non-linear curve fitting algorithm. This results were improved estimation of T2*-weighted dynamic series. Conclusion: The present study demonstrated an improvement of an estimation of kinetic parameters from dynamic contrast-enhanced (DCE) T2*-weighted magnetic resonance imaging data, using contrast agents. The advanced kinetic models include the relation of volume transfer constant $K^{trans}\;(min^{-1})$ and the volume of extravascular extracellular space (EES) per unit volume of tissue $\nu_e$.

  • PDF

Analysis on Relations between Travel time and Watershed Characteristics (유역특성(流域特性)과 홍수도달시간(洪水到達時間)과의 상관해석(相關解析))

  • Suh, Seung Duk;Lim, Kyu Dong
    • Current Research on Agriculture and Life Sciences
    • /
    • v.5
    • /
    • pp.158-167
    • /
    • 1987
  • The purpose of this study is to inquire and analyse the relation between traveltime (Tc) and watetshed physical characteristics surveyed such as river length (L), Lea, river main slope (s), base length of time area diagram, and storage constant (k). The results obtained in this study are as follows. The average widths of watersheds were with the range from 4.6 kilometers to 16.7 kilometers. The shape factors of main stream ranged from 0.08 to 0.37. The average slopes to main 8tream were within the range of 1.7-5.5 meter per kilometer. The relation between the base length and traveltime from S. C. S. method, Rational method, and RZIHA+KRAVEN method were derived $Tc=0.524{\times}1.35^c$ (r=0.98), $Tc=0.628{\times}1.339^c$, (r=0.98), $Tc=0.667{\times}1.342^c$ (r=0.97). The base length of the time-area diagram (c) for the IUH was derived as $c=0.9(\frac{L.L_{ca}}{\sqrt{s}})^{0.35}$ and correlation coefficient was 0.98 which defined a high significance. The storage constant K, derived in this study was $K=8.32+0.0213{\frac{L}{\sqrt{s}}}$ with correlation coefficient (0.96). The relation between storage Constant and conventional formula were figured out $Tc=0.0003{\times}3.323^k$ (r=0.97). $Tc=0.00045{\times}3.268^k$ (r=0.99) and $Tc=0.0004{\times}3.26^k$ (r=0.963). The base length (c) and storage constant (k) of time-Area Diagram were very important parts that determined traveltime for flood events. In the estimate of travel time for predicting flood volume, the formula of $Tc=0.524{\times}1.35^c$ that would be available to apply the Nak - Dong river watershed area and homogeneous watershed characteristics was found.

  • PDF

Studies on the Flame Temperature Measurement of the Propagating Flame (전파화염에서의 화염온도측정에 관한 연구)

  • ;;Jeung, In Seuck
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.1 no.4
    • /
    • pp.182-189
    • /
    • 1977
  • The propagating flame temperature of the Propane-Air premixture by using 30.$\mu$ and 50.$\mu$ diameter platinum sensing wires, that is, Two Wires Correction Method, Through the constant volume burining inside the 150mm diameter, 30mm height combustion chamber under the circumstances of the atomospheric pressure, and the room temperature was determined. Also the temperature distribution across High Temperature Region, i.e. Flame Front, and the temperature profile behind the flame the front have been obtained.

Effect of fiber volume fraction on the tensile softening behavior of Ultra High Strength Steel Fiber-Reinforced Concrete (섬유혼입률이 초고강도 강섬유 보강 콘크리트의 인장연화거동에 미치는 영향)

  • Kang, Su-Tae;Park, Jung-Jun;Lee, Si-Young;Park, Gun;Hong, Sung-Wook;Kim, Sung-Wook
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.421-424
    • /
    • 2008
  • Ultra high strength steel fiber-reinforced concrete is characterized with high tensile strength and ductility. This paper revealed the influence of fiber volume fraction on the tensile softening behaviour of ultra high strength steel fiber-reinforced concrete and developed tensile softening model to predict the deformation capacity by finite element method analysis with experimental results. The initial stiffness of ultra high strength steel fiber-reinforced concrete was constant irrespective of fiber volume fraction. The increase of fiber volume fraction improved the flexural tensile strength and caused more brittle softening behaviour. Finite element method analysis proposed by Uchida et al. was introduced to obtain the tensile softening curve from three point notched beam test results and we proposed the tensile softening model as a function of fiber volume fraction and critical crack width.

  • PDF

Numerical study of flow of Oldroyd-3-Constant fluids in a straight duct with square cross-section

  • Zhang, Mingkan;Shen, Xinrong;Ma, Jianfeng;Zhang, Benzhao
    • Korea-Australia Rheology Journal
    • /
    • v.19 no.2
    • /
    • pp.67-73
    • /
    • 2007
  • A finite volume method (FVM) base on the SIMPLE algorithm as the pressure correction strategy and the traditional staggered mesh is used to investigate steady, fully developed flow of Oldroyd-3-constant fluids through a duct with square cross-section. Both effects of the two viscoelastic material parameters, We and ${\mu}$, on pattern and strength of the secondary flow are investigated. An amusing sixteen vortices pattern of the secondary flow, which has never been reported, is shown in the present work. The reason for the changes of the pattern and strength of the secondary flow is discussed carefully. We found that it is variation of second normal stress difference that causes the changes of the pattern and strength of the secondary flow.

Rayleigh-Ritz optimal design of orthotropic plates for buckling

  • Levy, Robert
    • Structural Engineering and Mechanics
    • /
    • v.4 no.5
    • /
    • pp.541-552
    • /
    • 1996
  • This paper is concerned with the structural optimization problem of maximizing the compressive buckling load of orthotropic rectangular plates for a given volume of material. The optimality condition is first derived via variational calculus. It states that the thickness distribution is proportional to the strain energy density contrary to popular claims of constant strain energy density at the optimum. An engineers physical meaning of the optimality condition would be to make the average strain energy density with respect to the depth a constant. A double cosine thickness varying plate and a double sine thickness varying plate are then fine tuned in a one parameter optimization using the Rayleigh-Ritz method of analysis. Results for simply supported square plates indicate an increase of 89% in capacity for an orthotropic plate having 100% of its fibers in $0^{\circ}$ direction.

The Design and Magnetic Field Analysis of Moving Coil Type LDM by relation between thrust constant and size (가동코일형 LDM의 추력정수와 치수관계에 의한 자계해석과 설계)

  • Ryu, J.S.;Baek, S.H.;Kim, Y.;Yoon, S.Y.;Maeng, I.J.;Kim, I.N.
    • Proceedings of the KIEE Conference
    • /
    • 1998.11a
    • /
    • pp.82-84
    • /
    • 1998
  • LDM(Linear DC Motor) are used in high speed, high-precision position control system. Because of these advatages, LDM has already used in the motor of pen-recorder, magnetic-disk devices. Under the limited dimension, we propose the design method of LDM by magnetic circuit. In this paper, a relation between the thrust constant and size of a LDM that is moving coil type with unipolar is described, which is defined as a simple relational equation. To maximize the rate of thrust to the volume of LDM, the magnetic flux density in the yoke is adjusted to the value of magnetic equation By the magnetic field analysis(FEM), the validity of the equation is confirmed.

  • PDF

Optimal stiffness distribution in preliminary design of tubed-system tall buildings

  • Alavi, Arsalan;Rahgozar, Reza
    • Structural Engineering and Mechanics
    • /
    • v.65 no.6
    • /
    • pp.731-739
    • /
    • 2018
  • This paper presents an optimal pattern for distributing stiffness along a framed tube structure through an analytic equation, which may be used during the preliminary design stage. Most studies in this field are computationally intensive and time consuming, while a hand-calculation method, as presented here, is a more suitable tool for sensitivity analyses and parametric studies. Approach in development of the analytic model is to minimize the mean compliance (external work) for a given volume of material. A variational statement of the problem is made, and a specified deformation-profile is obtained as the necessary condition for a minimum; enforcing this condition, stiffness is then computed. Due to some near-zero values for stiffness, the problem is modified by considering a lower bound constraint. To deal with this constraint, the design domain is assumed to be divided into two zones of constant stiffness and constant curvature; and the problem is restated in terms of these concepts. It will be shown that this methodology allows for easy computation of stiffness through an analytic and dimensionless equation, valid in any system of units. To show practicality of the proposed method, a tubed-system structure with uniform stiffness distribution is redesigned using the proposed model. Comparative analyses of the results reveal that in addition to simplicity of the proposed method, it provides a rather high degree of accuracy for real-world problems.

A Study on Soot Formation in Premixed Constant-Volume Combustion at High Pressures (高壓下의 定積 豫混合氣燃燒에 있어서 煤煙생成에 關한 硏究)

  • 임재근;배명환;김종일
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.3
    • /
    • pp.589-597
    • /
    • 1992
  • The effect of pressure on soot formation in premixed propane-air combustion is investigated at high pressures over the pressure range of 1 to 5 MPa by using a specially designed constant volume combustion bomb. The combustiom chamber of disk type with eight spark plugs located on the circumference at an interval of 45deg is 100mm in diameter by 14mm thick. The end gases are compressed to high pressures by the eight converging flames. The soot volume fraction in the chamber center during the final stage of combustion at the highest pressure is measured by the in-situ laser extinction technique, and the burnt gas temperature during the same period is measured by the two-color method. It is found that the soot yield rises with 50 to 100% for the respective equivalence ratio range of 1.9-2.2 at an interval of 0.1 when the combustion pressure is increased from 1 to 5 MPa, and that the turbulent flames decrease in the soot yield as compared with the laminar flames because the burnt gas temperatures increase with the drop of heat loss.