• Title/Summary/Keyword: Constant torque

Search Result 418, Processing Time 0.031 seconds

Parameters Adaptive Identification of Vector Controlled Induction Motor (유도전동기 벡터제어에 있어서 파라미터 적응동정)

  • 박영산;조성훈;이성근;김윤식;엄상오
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.3 no.3
    • /
    • pp.651-659
    • /
    • 1999
  • This Paper Proposes new speed and electromagnetic torque control of an induction motor, which is robust against time varying parameters. The control is based on adaptive vector control with serial block adaptive algorithm. Motor parameters used to estimates slip frequency and electromagnetic torque. Parameters mismatch in the control system detrimentally affects slip frequency estimation and torque response. In order to compensate lot degradation of the responses, an adaptive identifier for the magnetizing inductance and the secondary time constant is introduced. adaptive vector control system consisted of two subsystems, a vector control system realized on synchronous frame and a parameter identification system on stationary frame. the effectiveness of the proposed method was verified by some digital simulations.

  • PDF

High Efficiency Drive of Dual Inverter Driven SPMSM with Parallel Split Stator

  • Lee, Yongjae;Ha, Jung-Ik
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.2 no.2
    • /
    • pp.216-224
    • /
    • 2013
  • This paper describes dual inverter drive for a fractional-slot concentrated winding permanent magnet synchronous machine (PMSM). PMSMs are widely used in many applications from small servo motors to few megawatts generators thanks to its high efficiency and torque density. Especially, fractional-slot concentrated winding PMSM is very popular in the applications where wide operation range is required because it shows very wide constant power speed ratios. High speed operation, however, requires lots of negative daxis current for reducing back-EMF regardless of output torque. Field weakening current does not contribute to the torque generation in surface mounted PMSM case and causes inverter and copper loss. To reduce the losses from field weakening current, this paper proposes PMSM with split stator and parallel dual inverter drive. Proposed parallel dual inverter drive reduces back-EMF and enables efficient drive at high speed and light load situation. Control strategy of proposed dual inverter system is established through loss analysis and simulation. Proposed concept is verified with practical experiment.

An Optimal Current Distribution Method of Dual-Rotor BLDC Machines

  • Kim, Sung-Jung;Park, Je-Wook;Im, Won-Sang;Jung, Hyun-Woo;Kim, Jang-Mok
    • Journal of Power Electronics
    • /
    • v.13 no.2
    • /
    • pp.250-255
    • /
    • 2013
  • This paper proposes an optimal current distribution method of dual-rotor brushless DC machines (DR-BLDCMs) which have inner and outer surface-mounted permanent-magnet rotors. The DR-BLDCM has high power density and high torque density compare to the conventional single rotor BLDCM. To drive the DR-BLDCM, dual 3-phase PWM inverters are required to excite the currents of a dual stator of the DR-BLDCM and an optimal current distribution algorithm is also needed to enhance the system efficiency. In this paper, the copper loss and the switching loss of a DR-BLDCM drive system are analyzed according to the motor parameters and the switching frequency. Moreover, the optimal current distribution method is proposed to minimize the total electrical loss. The validity of the proposed method was verified through several experiments.

Dynamic Characteristic Analysis of Line-Start Permanent Magnet Synchronous Motor (직립 기동 영구자석 동기전동기의 동특성 해석)

  • Kim, Byong-Kuk;Jo, Won-Yung;Lee, In-Jae;Moon, Ji-Woo;Kim, Mi-Jung;Lim, Seong-Hwan;Cho, Yun-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2006.04b
    • /
    • pp.185-187
    • /
    • 2006
  • The line-start permanent magnet synchronous motor has a high efficiency and an advantage in constant speed operation regardless of the effect of load variation. However it is difficult to predict the performance of characteristics accurately, because of the unbalanced starting torque with the initial starting position of the rotor and the generation of a break torque. In this paper the dynamic characteristics of the line-start permanent magnet synchronous motor are described and compared with those of the squirrel-cage induction motor through the simulation to find the characteristics of the permanent magnets and the rotor bars in the line-start permanent magnet synchronous motor.

  • PDF

Optimal Starting Torque Control of Wound Rotor Induction Motor by Microprocessor (개용분 PFN-PMW의 유전특성에 관한 연구)

  • Park, Min-Ho;Jung, So-Woong
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.33 no.8
    • /
    • pp.316-324
    • /
    • 1984
  • In the wound rotor induction motor, the external resistor is usually added to the rotor circuit in order to limit the starting current. In this scheme, whilst the starting current is limited, the available torque is remarkably reduced. In this paper, to improve the starting characteristics the stator current can be maintained constant by adjusting the external resistor. To change the external resistor, teh chopper and the resistor is connected in parallel, and the chopper duty cycle is adjusted by microprocessor. The duty cycle is calculated according to the actual speed of motor by microprocessor look-up table map. In this suggested scheme, the starting characteristics are remarkably improved without over-current. The starting time of this system is reduced by 20-48 Percent compared with fixed extemal resistance system in the same load.

  • PDF

Mode Shape of Timoshenko Beam Having Different Circular Cross-Sections (다단 티모센코 원형단면봉의 연속 고유모우드)

  • 전오성
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.6 no.4
    • /
    • pp.118-123
    • /
    • 1997
  • The study suggests a method to analyze the vibration of the multi-stepped beam having the different circular cross-sections. The rotatory inertia, the shear deformation and the torque applied at both ends of the beam are considered in the governing equation. The complex displacement and the variable separation are introduced to derive the solution of the equation of each uniform beam element having constant cross-section. Then boundary conditions are applied to solve the total system. This method uses the mathematically exact solutions unlike numerical method such as the finite element method in solving the problem having the simultaneous differential equations of Timoshenko beam theory. the natural frequencies and the corresponding mode shapes are precise, especially the mode shapes are continuous.

  • PDF

Control of a 3-Phase VR Type Self-Bearing Step Motor (3상 가변형 셀프 베어링 스텝모터의 제어)

  • Kim, Dae-Gon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.12
    • /
    • pp.1974-1980
    • /
    • 2001
  • The control algorithm of a new type self-bearing step motor is presented. The motor actuator is used for both motor and bearing functionality without any redundant coil windings or redundant electromagnets. The self$.$bearing step motor layout and its control method are described. A linearized farce-current-displacement relationship is derived. As the result of the unbalance response approach, the constant torque production is possible fur the supply current regulation algorithm. And even if the bearing functionality is added in the motor functionality, no additional current for bearing functionality is possible, and this leads to minimize the net power loss. Also, the unbalance response shows the independent bearing force and motor torque.

Optimal Design of the Rotor Structure by using Box-Behnken Method for IPMSM (Box-Behnken법을 이용한 매입형 영구자석 동기전동기의 회전자 구조 최적설계)

  • Han, Jung-Ho;Kim, Won-Ho;Jang, Ik-Sang;Kim, Mi-Jung;Lee, Ki-Doek;Lee, Jae-Jun;Lee, Ju
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.949-950
    • /
    • 2011
  • There are various ways of optimizing rotor design of Interior Permanent Magnet Synchronous Motors(IPMSM). In this paper, the best optimized design value was found by varying the Bridge thickness of PM in the rotor and changing Rib. The set design values were torque, 5 harmonics, 7 harmonics, and safety factor. Also, in order to make practical design value easily and quickly for optimization, Box-Behnken of Response Surface Method(RSM) method was used. Therefore, IPMSM resulted an optimized design model with high torque, low harmonics, and constant value of safety factor.

  • PDF

로봇의 최적 시간 제어에 관한 연구

  • 정년수;한창수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.10a
    • /
    • pp.301-305
    • /
    • 2001
  • Conventionally, robot control algorithms are divided into two stages, namely, path or trajectory planning and path tracking(or path control). This division has been adopted mainly as a means of alleviating difficulties in dealing with complex, complex, coupled manipulator dynamics. The minimum-time manipulator control problem is solved for the case when the path is specified and the actuator torque limitations are known. In path planning, DP is applied to applied to find the shortest path form initial position to final position with the assumptions that there is no obstacle and that each path is straight line. In path control, the phase plane technique is applied to the minimum-time control with the assumptions that the bound on each actuator torque is a function of joint position and velocity or constant. This algorithm can be used for any manipulator that has rigid link, known dynamics equations of motion, and joint angles that can be determined at a given position on the path.

The Influence of Magnetization Pattern on the Performance of Permanent Magnet Eddy Current Couplings and Brakes

  • Cha, Hyun-Rok;Cho, Han-Wook;Lee, Sung-Ho
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.3
    • /
    • pp.379-384
    • /
    • 2008
  • This paper examines permanent magnet eddy current couplings and brakes. Specifically, the effect of permanent magnet magnetization patterns on the magnetic field and force production is investigated. The eddy current couplings and brakes employ high energy-product neodymium-iron-boron (NdFeB) permanent magnets that act on iron-backed copper drums to provide torque transfer from motor to load without mechanical contact. A 2-dimensional finite element modeling is performed to predict the electromagnetic behavior and the torque-speed characteristics of permanent magnet type eddy current couplings and brakes under constant speed operation.