• Title/Summary/Keyword: Constant heat flux

검색결과 223건 처리시간 0.029초

파라핀 슬러리를 사용한 다칩모듈의 냉각특성 (Cooling characteristics of the multichip module using paraffin slurry)

  • 조금남;최민구
    • 대한기계학회논문집B
    • /
    • 제22권6호
    • /
    • pp.888-898
    • /
    • 1998
  • The present study investigated the effects of the experimental parameters on the cooling characteristics of the multichip module cooled by the indirect liquid cooling method using water and paraffin slurry. The experimental parameters are mass fraction of 2.5 ~ 7.5% for paraffin slurry, heat flux of 10 ~ 40 W/cm$^{2}$ for the simulated VLSI chips and Reynolds numbers of 5,300 ~ 15,900. The apparatus consisted of test section, paraffin slurry maker, pump, constant temperature baths, flowmeter, etc. The test section made of in-line, four-row array of 12 heat sources for simulating 4 * 3 multichip module which was flush mounted on the top wall of a horizontal rectangular channel with the aspect ratio of 0.2. The inlet temperature was 20 deg. C for all experiments. The size of paraffin slurry was constant as 10 ~ 40 .mu.m befor and after the experiment. The chip surface temperatures for paraffin slurry with the mass fraction of 7.5% showed lower by 16 deg. C than those for water when the heat flux is 40 W/cm$^{2}$. The local heat transfer coefficients for the paraffin slurry with the mass fraction of 7.5% were larger by 17 ~ 25% than those for water at the first and the fourth row. The local heat transfer coefficients reached to a row-number-independent, thermally fully developed value approximately after the third row. The local Nusselt numbers at the fourth row for paraffin slurry with the mass fraction of 7.5% were larger by 23 ~ 29% than those for water.

점탄성 특성을 가진 폴리머용액의 난류유동 열적입구길이에 관한 실험적 연구 (An experimental study on the thermal entrance lengths for viscoelastic polymer solutions in turbulent tube flow)

  • 유상신;황태성;엄정섭
    • 대한기계학회논문집
    • /
    • 제12권5호
    • /
    • pp.1189-1196
    • /
    • 1988
  • 본 연구에서는 내경이 각각 8.5mm와 10.3mm이며 무차원길이가 각각 710과 1158인 두 개의 시험관을 사용하는 유동장치를 제작하여 시험관 입구에서부터 유체역 학적 경계층(hydrodynamic boundary layer)과 열적 경계층(thermal boundary layer)이 동시에 발달하기 시작하는 경계조건을 형성하고 관벽에서 일정한 열 플럭스(constant heat flux)를 발생하는 조건을 부여하였다. 퇴화현상(degradation)에 대하여 비교적 안정성을 가진 폴리아크라마이드(polyacrylamide) Separan Ap273을 수도물에 용해하여 제조한 폴리머용액으로 유동특성과 열전달특성을 실험하여 열적입구길이와 열전달특성 을 규명하고자 한다.

이상 유동 비등 시 마이크로 채널에서의 열전달 특성과 유동양식 조사 (Heat transfer characteristic and flow pattern investigation in micro-channels during two-phase flow boiling)

  • 최용석;임태우
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제39권7호
    • /
    • pp.696-701
    • /
    • 2015
  • 본 연구에서는 깊이 0.2 mm, 폭 0.45 mm, 길이 60mm 그리고 채널의 개수는 15개인 마이크로 채널에서 이상 유동비등에 관한 실험을 수행하였다. 작동유체로는 FC-72가 사용되었으며, 실험은 질량유속과 열유속 각각 $200-400kg/m^2s$, $5-40kW/m^2$ 범위와 증기 건도 0.1-0.9 범위에서 수행되었다. 열전달 계수는 낮은 열유속에서는 급격하게 감소하였으며, 일정 열유속 이상에서는 거의 일정하게 유지되었다. 측정된 열전달 계수로부터 기존의 방법을 이용하여 기포류, 슬러그류, 천류 그리고 파형/환상류의 유동양식으로 분류하였다. 또한 분류한 유동양식의 결과를 파형/환상류 영역으로의 천이 기준과 비교하였다. 하지만 기존의 천이 기준으로는 본 연구의 실험결과를 만족스럽게 예측하지 못하였다.

복사열전달을 고려한 Cusp 자기장이 있는 초크랄스키 단결정 성장 공정의 유동에 관한 연구 (A numerical simulation of radiative heat transfer coupled with Czochralski flow in cusp magnetic field)

  • 김태호;이유섭;전중환
    • 대한기계학회논문집B
    • /
    • 제20권3호
    • /
    • pp.988-1004
    • /
    • 1996
  • The characteristics of flow and oxygen concentration are numerically studied in Czochralski 8" silicon crystal growing process considering radiative heat transfer. The analysis of net radiative heat flux on all relevant surfaces shows growing crystal affects the heater power. Furthermore, the variation of the radiative heat flux along the crystal surface in the growing direction is confirmed and should be a cause of thermal stress and defect of the crystal. The calculated distributions of temperature and, heat flux along the wall boundaries including melt/crystal interface, free surface and crucible wall indicate that the frequently used assumption of the thermal boundary conditions of insulated crucible bottom and constant temperature at crucible side wall is not suitable to meet the real physical boundary conditions. It is necessary, therefore, to calculate radiative heat transfer simultaneously with the melt flow in order to simulate the real CZ crystal growth. If only natural convection is considered, the oxygen concentration on the melt/crystal interface decreases and becomes uniform by the application of a cusp magnetic filed. The heater power needed also increases with increasing the magnetic field. For the case of counter rotation of the crystal and crucible, the magnetic field suppresses azimutal flow produced by the crucible rotation, which results in the higher oxygen concentration near the interface.

Heat Transfer in Metallic Foam Subjected to Constant Heat Flux

  • Jin, Meihua;Kim, Pil-Hwan;Jeong, Hyo-Min;Chung, Han-Shik
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 하계학술발표대회 논문집
    • /
    • pp.1372-1377
    • /
    • 2008
  • Since metallic foam will increase the performance of heat exchanger, it have caused many researcher's attention recently. Our research base on the model that metallic foams applied to heat exchanger. In this case, there is three kind of heat transfer mechanisms, heat conduction in fibers, heat transfer by conduction in fluid phase, and internal heat change between solid and fluid phases. In this paper, we first discuss the acceptance of applying thermal equilibrium among the two phases. then to calculate the dimensionless temperature profile along 7 metallic foams. The 7 samples have different characteristics, such as area ratio, effective conductivity, porosity, etc.

  • PDF

Laminar Forced Convective Heat Transfer to Near-Critical Water in a Tube

  • Lee, Sang-Ho
    • Journal of Mechanical Science and Technology
    • /
    • 제17권11호
    • /
    • pp.1756-1766
    • /
    • 2003
  • Numerical modeling is carried out to investigate forced convective heat transfer to near-critical water in developing laminar flow through a circular tube. Due to large variations of thermo-physical properties such as density, specific heat, viscosity, and thermal conductivity near thermodynamic critical point, heat transfer characteristics show quite different behavior compared with pure forced convection. With flow acceleration along the tube unusual behavior of heat transfer coefficient and friction factor occurs when the fluid enthalpy passes through pseudocritical point of pressure in the tube. There is also a transition behavior from liquid-like phase to gas-like phase in the developing region. Numerical results with constant heat flux boundary conditions are obtained for reduced pressures from 1.09 to 1.99. Graphical results for velocity, temperature, and heat transfer coefficient with Stanton number are presented and analyzed.

Thermal Analysis on Triple-Passage Heat Exchangers for a Continuous Hot-Steel Tube Cooling System

  • Ko, Bong-Hwan;Park, Seung-Ho
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제10권1호
    • /
    • pp.10-18
    • /
    • 2002
  • The objective of present study is to analyze a concentric triple-passage heat exchanger for an optimal design of a continuous hot steel-tube cooling system, where a hot-steel tube line is passing through an antioxidant gas with a constant speed. Velocities and temperatures of the inert gas flowing between inner and outer tubes are calculated theoretically for laminar and numerically for turbulent flow regimes. From their profiles Nusselt numbers and friction factors are calculated (or various ratios of inner/outer tube radii and relative velocities. With these Nusselt numbers triple-passage heat exchangers are investigated for their thermal characteristics. It is shown that heat transfer coefficients based on ratios of average heat fluxes from inner and outer tubes might result in great errors for the temperature distributions of the flows, since local heat transfer coefficients for flows through an annulus are dependent on local wall heat flux ratios.

固體粉末이 浮上된 二相亂流 管流動의 熱傳達에 관한 硏究 (Study on the two phase turbulent heat transfer of gas-solid supension flow in pipes)

  • 김재웅;김봉기;최영돈
    • 대한기계학회논문집
    • /
    • 제13권3호
    • /
    • pp.528-537
    • /
    • 1989
  • The objective of this paper is to investigate effects of the specific heat and the diameter of suspending particles on the heat transfer coefficient of two phase turbulent flow with suspension of solid particles in a circular tube with constant heat flux. Heat transfer coefficients of two phase turbulent flow in pipe with suspension of graphite powder were measured with variations of particle sizes and solid-gas loading ratio. Measured data were compared with predictions by numerical analysis in which the turbulece models are closed on the first order level. Results show that heat transfer coefficient increases with increasing the solid-gas loading ratio and the specific heat of suspending material, however, it decreases as the average diameter of particles decreases below $24{\mu}m$.

고체의 전도를 포함한 기포성장의 복합적 해석 (Conjugate Analysis of Bubble Growth Involving Conduction in Solid)

  • 손기헌
    • 대한기계학회논문집B
    • /
    • 제27권2호
    • /
    • pp.265-273
    • /
    • 2003
  • Numerical analysis of bubble motion during nucleate boiling is performed by imposing a constant heat flux condition at the base of a heater which occurs in most of boiling experiments. The temporal and spatial variation of a solid surface temperature associated with the bubble growth and departure is investigated by solving a conjugate problem involving conduction in the solid. The vapor-liquid interface is tracked by a level set method which is modified to include the effects of phase change at the interface, contact angle at the wall and evaporative heat flux in a thin liquid micro-layer. Based on the numerical results, the bubble growth pattern and its interaction with the heating solid are discussed. Also, the effect of heating condition on the bubble growth under a micro-gravity condition is investigated.

희박연소를 위한 혼합기의 성층급기와 유동에 관한 연구 (A Study on the Effects of Induced Mixture Flows and the Stratified Charge for a Lean Burn)

  • 전대수;이태원;윤수한;하종률
    • 한국자동차공학회논문집
    • /
    • 제8권1호
    • /
    • pp.1-9
    • /
    • 2000
  • In the present study, the IDI-type constant volume chamber, which utilizes the indirect injection stratified charge method, is used to solve several problems including misfires and cycle-variations caused by unstable initial ignitions. A subchamber has been used to make an ignitable mixture under the low mean equivalence ratio. After burned in the subchamber, the flame jet getting through the passage hode enters the main chamber and burns the lean charge. There are many factors which affect the combustion characteristics of the indirect injection stratified engine. The passage hole angle is the most important since it determines the direction of flame flows into the main chamber. In the present study, we measured the combustion pressure, and the wall temperature, and computed the heat flux through the cylinder wall in order to understand the combustion characteristics depending on passage hole angle and the equivalence ratio.

  • PDF