• 제목/요약/키워드: Constant Axial Load

검색결과 257건 처리시간 0.027초

Analysis of free vibration of beam on elastic soil using differential transform method

  • Catal, Seval
    • Structural Engineering and Mechanics
    • /
    • 제24권1호
    • /
    • pp.51-62
    • /
    • 2006
  • Differential transform method (DTM) for free vibration analysis of both ends simply supported beam resting on elastic foundation is suggested. The fourth order partial differential equation for free vibration of the beam resting on elastic foundation subjected to bending moment, shear and axial compressive load is obtained by using Winkler hypothesis and small displacement theory. It is assumed that the material is linear-elastic, and that axial load and modulus of subgrade reaction to be constant. In the analysis, shear and axial load effects are considered. The frequency factors of the beam are calculated by using DTM due to the values of relative stiffness; the results are presented in graphs and tables.

축하중을 고려한 단순보상의 이동탄성계의 진동해석 (Dynamic behavior of moving Elastic Body System on Simple Beam with Axial Load)

  • 김영수
    • 한국해양공학회지
    • /
    • 제14권1호
    • /
    • pp.67-73
    • /
    • 2000
  • The dynamic behavior of a moving elastic body system with three constant velocitics on a simple beam with an axial load is analyzed by numerical method. A moving elastic body system is composed of an elastic body and a suspension unit with two unsprung masses. The governing equations are derived with an aid of Lagrange's equation. These equation are solved by Runge-Kutta method. The damping coefficients a spring constants of the suspension unit the force circular frequency on a moving elastic body the velocity of a moving elastic body system. These effects are more important in the high modes of a simple beam.

  • PDF

압축하중을 받는 다층간분리 적층 복합 보-기둥의 자유진동 (Free Vibration of Compressed Laminated Composite Beam-Columns with Multiple Delaminations)

  • 이성희;박대효;백재욱;한병기
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.501-508
    • /
    • 2001
  • Free vibration analysis of multi-delaminated composite beam-columns subjected to axial compression load is performed in the present study. In order to investigate the effects of multi-delaminations on the natural frequency and elastic buckling load of multi-delaminated beam-columns, the general kinematic continuity conditions are derived from the assumption of constant slope and curvature at the multi-delamination tip. Characteristic equation of multi-delaminated beam-column is obtained by dividing the global multi-delaminated beam-columns into segments and by imposing recurrence relation from the continuity conditions on each sub-beam-column. The natural frequency and elastic buckling load of multi-delaminated beam-columns according to the incremental load of axial compression, which is limited to the maximum elastic buckling load of sound laminated beam-column, are obtained. It is found that the sizes, locations and numbers of multi-delaminations have significant effect on natural frequency and elastic buckling load, especially the latter ones.

  • PDF

Seismic behavior of composite walls with encased steel truss

  • Wu, Yun-tian;Kang, Dao-yang;Su, Yi-ting;Yang, Yeong-bin
    • Steel and Composite Structures
    • /
    • 제22권2호
    • /
    • pp.449-472
    • /
    • 2016
  • This paper studies the seismic behavior of reinforced concrete (RC) walls with encased cold-formed and thin-walled (CFTW) steel truss, which can be used as an alternative to the conventional RC walls or steel reinforced concrete (SRC) composite walls for high-rise buildings in high seismic regions. Seven one-fourth scaled RC wall specimens with encased CFTW steel truss were designed, manufactured and tested to failure under reversed cyclic lateral load and constant axial load. The test parameters were the axial load ratio, configuration and volumetric steel ratio of encased web brace. The behaviors of the test specimens, including damage formation, failure mode, hysteretic curves, stiffness degradation, ductility and energy dissipation, were examined. Test results indicate that the encased web braces can effectively improve the ductility and energy dissipation capacity of RC walls. The steel angles are more suitable to be used as the web brace than the latticed batten plates in enhancing the ductility and energy dissipation. Higher axial load ratio is beneficial to lateral load capacity, but can result in reduced ductility and energy dissipation capacity. A volumetric ratio about 0.25% of encased web brace is believed cost-effective in ensuring satisfactory seismic performance of RC walls. The axial load ratio should not exceed the maximum level, about 0.20 for the nominal value or about 0.50 for the design value. Numerical analyses were performed to predict the backbone curves of the specimens and calculation formula from the Chinese Code for Design of Composite Structures was used to predict the maximum lateral load capacity. The comparison shows good agreement between the test and predicted results.

주변이 RC로 구속된 조적조 벽체의 내진성능향상에 관한 실험적 연구 (Experimental Study for Higher Seismic Performance of Confined Masonry Wall System)

  • 김경태;서수연;윤승조;요시무라코지;성기태
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 추계 학술발표회 제16권2호
    • /
    • pp.5-8
    • /
    • 2004
  • In order to investigate the effect of the height of application point of lateral loads and reinforcing steel bars in walls and columns in improving the seismic behavior of confined concrete block masonry walls, an experimental research program is conducted. A total of four one-half scale specimens are tested under repeated lateral loads. Specimens are tested to failure with increasing maximum lateral drifts while a vertical axial load was applied and maintained constant. The constant vertical axial stresses applied are 0, 0.84 and 1.80MPa, while the amount of reinforcements in horizontal and vertical directions are $0\%,\;0.08\%\;and\;0.18\%$ respectively. Test results obtained for each specimen include cracking patterns, load-deflection data, and strains in reinforcement and walls in critical locations. Analysis of test data showed that above parameters generate a considerable effect on the seismic performance of confined concrete block masonry walls.

  • PDF

지진격리장치의 내진성능에 관한 실험적 평가 (Experimental Evaluation of Seismic Performance for Seismic Isolation Bearings)

  • 오주;이재욱;임형주;김형오
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2010년도 춘계학술대회 논문집
    • /
    • pp.1126-1131
    • /
    • 2010
  • Experimental studies for the high damping rubber bearing, lead rubber bearing and natural rubber bearing, those are often used to improve the seismic capacity if the structure recently, are conducted to evaluate the seismic capacity of the seismic isolation bearings. The shear stiffness of the bearings decrease and the shear strain amplitude or the constant axial load level increase, but not sensitive to the strain rate effect. Bearings are strong for the axial compression but weak for the axial tension.

  • PDF

Fire Behavior of Reinforced Concrete Filled Square Steel Tube Columns Under Constant Axial Loads

  • Jeeyoung Lee;Seulgi Han;Jinwon Shin;Inrak Choi;Sungmo Choi
    • 국제초고층학회논문집
    • /
    • 제13권1호
    • /
    • pp.85-95
    • /
    • 2024
  • A composite member made of concrete-filled steel tubes (CFT columns) has been recognized for its fire resistance due to the thermal mass effect of concrete inside the steel tube, as shown in various studies. In this study, the fire resistance performance of reinforced CFT columns under constant axial load was evaluated using finite element analysis with ABAQUS. For this purpose, the variables including cross-section size, steel tube thickness, and concrete cover thickness were set, and the temperature distribution in the column cross-section exposed to a standard fire was investigated using heat transfer analysis. Ultimately, a P-M interaction curve was obtained by evaluating the overall residual strength of columns, and the fire resistance time was determined by evaluating axial displacement-time responses due to the reduction in load capacity during fire through stress analysis.

Seismic behavior of reinforced concrete exterior beam-column joints strengthened by ferrocement composites

  • Li, Bo;Lam, Eddie Siu-shu;Wu, Bo;Wang, Ya-yong
    • Earthquakes and Structures
    • /
    • 제9권1호
    • /
    • pp.233-256
    • /
    • 2015
  • This paper presents an experimental study to assess the effectiveness of using ferrocement to strengthen deficient beam-column joints. Ferrocement is proposed to protect the joint region through replacing concrete cover. Six exterior beam-column joints, including two control specimens and four strengthened specimens, are prepared and tested under constant axial load and quasi-static cyclic loading. Two levels of axial load on column (0.2fc'Ag and 0.4fc'Ag) and two types of skeletal reinforcements in ferrocement (grid reinforcements and diagonal reinforcements) are considered as test variables. Experimental results have indicated that ferrocement as a composite material can enhance the seismic performance of deficient beam-column joints in terms of peak horizontal load, energy dissipation, stiffness and joint shear strength. Shear distortions within the joints are significantly reduced for the strengthened specimens. High axial load (0.4fc'Ag) has a detrimental effect on peak horizontal load for both control and ferrocement-strengthened specimens. Specimens strengthened by ferrocement with two types of skeletal reinforcements perform similarly. Finally, a method is proposed to predict shear strength of beam-column joints strengthened by ferrocement.

Nonlinear response of a resonant viscoelastic microbeam under an electrical actuation

  • Zamanian, M.;Khadem, S.E.;Mahmoodi, S.N.
    • Structural Engineering and Mechanics
    • /
    • 제35권4호
    • /
    • pp.387-407
    • /
    • 2010
  • In this paper, using perturbation and Galerkin method, the response of a resonant viscoelastic microbeam to an electric actuation is obtained. The microbeam is under axial load and electrical load. It is assumed that midplane is stretched, when the beam is deflected. The equation of motion is derived using the Newton's second law. The viscoelastic model is taken to be the Kelvin-Voigt model. In the first section, the static deflection is obtained using the Galerkin method. Exact linear symmetric mode shape of a straight beam and its deflection function under constant transverse load are used as admissible functions. So, an analytical expression that describes the static deflection at all points is obtained. Comparing the result with previous research show that using deflection function as admissible function decreases the computation errors and previous calculations volume. In the second section, the response of a microbeam resonator system under primary and secondary resonance excitation has been obtained by analytical multiple scale perturbation method combined with the Galerkin method. It is shown, that a small amount of viscoelastic damping has an important effect and causes to decrease the maximum amplitude of response, and to shift the resonance frequency. Also, it shown, that an increase of the DC voltage, ratio of the air gap to the microbeam thickness, tensile axial load, would increase the effect of viscoelastic damping, and an increase of the compressive axial load would decrease the effect of viscoelastic damping.

저축력과 반복수평력을 받는 콘크리트충전 강관기둥의 이력특성 (Hysteresis Performance of CFT Columns subjected to Low Axial Force and Cyclic Lateral Loads)

  • 최성모;강석빈;김대중
    • 한국강구조학회 논문집
    • /
    • 제15권2호
    • /
    • pp.207-217
    • /
    • 2003
  • 콘크리트충전 강관구조는 합성효과에 의해 강관과 콘크리트의 단점을 상호보완하여 역학적으로 우수한 성능을 발휘할 수 있다. 그래서, 최근에는 고층건물에 구조시스템의 대안으로서 주목을 받고 있다. 본 연구의 목적은 일정축력과 반복 수평력을 받는 콘크리트충전 강관기둥의 내력 및 변형성능을 평가하는 것이다. 이 실험의 변수로는 강관의 폭두께비, 축력비 및 강관의 형상으로 정하여 총 18개의 실험체를 제작하여 실험하였다. 실험결과로부터 실험체의 최대내력 및 변형성능에 대해 검토하였다.