• Title/Summary/Keyword: Consolidation properties

Search Result 347, Processing Time 0.023 seconds

Mechanical Properties of Carbon Nanotube/Cu Nanocomposites Produced by Powder Equal Channel Angular Pressing (분말 ECAP 공정으로 제조된 탄소나노튜브/Cu 나노복합재료의 기계적 성질)

  • Yoon, Seung-Chae;Jeong, Young-Gi;Kim, Hyoung-Seop
    • Transactions of Materials Processing
    • /
    • v.15 no.5 s.86
    • /
    • pp.360-365
    • /
    • 2006
  • Carbon nanotubes (CNTs) have been the subject of intensive studies for applications in the fields of nano technologies in recent years due to their superior mechanical, electric, optical and electronic properties. Because of their exceptionally small diameters (${\appros}\;several\;nm$) as well as their high Young's modulus (${\appros}1\;TPa$), tensile strength (${\appros}\;200\;GPa$) and high elongation (10-30%) in addition to a high chemical stability, CNTs are attractive reinforcement materials for light weight and high strength metal matrix composites. Although extensive researches have been performed on the electrical, mechanical and functional properties of CNTs, there are not many successful results on the mechanical properties of CNT dispersed nanocomposites. In this paper, we applied equal channel angular pressing for consolidation of CNT/Cu powder mixtures. We also investigated the hardness and microstructures of CNT/Cu nanocomposites used experimental for metal matrix composites.

Consolidation deformation of Baghmisheh marls of Tabriz, Iran

  • Jalali-Milani, Shahrokh;Asghari-Kaljahi, Ebrahim;Barzegari, Ghodrat;Hajialilue-Bonab, Masoud
    • Geomechanics and Engineering
    • /
    • v.12 no.4
    • /
    • pp.561-577
    • /
    • 2017
  • Vast parts of the east of Tabriz city have been covered by Baghmisheh formation marls. These marls can be classified into three types based on their color as identified in yellow, green, and gray marls. Many high-rise buildings and other projects were founded and now is constructing on these marls. Baghmisheh formation marls are classified as stiff soil to very weak rock, therefore they undergo considerable consolidation settlement under foundation loads. This study presents the physical properties and consolidation behavior of these marls. According to the XRD tests, major clay minerals of marls are Illite, Kaolinite, Montmorillonite and Chloride. Uniaxial compressive strength are 100-250, 300-480 and 500-560 kPa for yellow, green and gray marls, respectively. Consolidation and creep behavior of Baghmisheh marls investigated by using of one dimensional consolidation apparatus under stress level up to 5 MPa. The results indicate that yellow marls have high compressibility, settlement and deformation modules. Green marls have an intermediate compressibility and settlement and while gray marls have low compressibility and settlement and from the foundation point of view have high stability. According to the creep test results, all types of marls have not been entered to progressive creep phase up to pressure 5 MPa.

Changes in bound water and microstructure during consolidation creep of Guilin red clay

  • Zhang, Dajin;Xiao, Guiyuan;Yin, Le;Xu, Guangli;Wang, Jian
    • Geomechanics and Engineering
    • /
    • v.30 no.5
    • /
    • pp.471-478
    • /
    • 2022
  • Creep of soils has a significant impact on mechanical properties. The one-dimensional consolidation creep test, thermal analysis test, scanning electron microscope (SEM) test, and mercury compression test were performed on Guilin red clay to study the changes in bound water and microstructure during the creep process of Guilin red clay. According to the results of the tests, only free and weakly bound water is discharged during the creep of Guilin red clay. When the consolidation pressure p is in the 12.5-400.0 kPa range, it is primarily the discharge of free water; when the consolidation pressure p is in the 800.0-1600.0 kPa range, the weakly bound water is converted to free water and discharged. After consolidation creep, the microstructure of soil changes from granular overhead contact structure to flat sheet-like stacking structure, with a decrease in the number of large and medium pores, an increase in the number of small and micro pores, and a decrease in the fractal dimension of pores. The creep process of red clay is the discharge of weakly bound water as well as the compression of large pores into small pores and the transition of soil particles from loose to dense.

Characteristics of Shear Strength and Consolidation Behavior of Soft Ground according to Stage Fill (단계성토에 따른 연약지반의 전단강도 및 압밀거동 특성)

  • Bang, Seongtaek
    • Journal of the Korean GEO-environmental Society
    • /
    • v.21 no.7
    • /
    • pp.17-26
    • /
    • 2020
  • The soft ground in the southwest coastal area composed of marine clay is greatly influenced by sediment composition, particle size distribution, particle shape, adsorption ions and pore water characteristics, tide and temperature. In addition, the geotechnical properties are very complex due to stress history, change in pore water, dissolution process and gas formation. In this study, the physical and mechanical properties of the soft ground were evaluated through field tests and laboratory tests to investigate the strength increase characteristics according to consolidation on the soft ground in the southwest coast. In addition, in order to understand the consolidation behavior of soft ground such as subsidence, pore water pressure, horizontal displacement of soil by embankment load, measuring instruments such as pore water pressuremeter, settlement gauge, inclinometer and differential settlement gauge was installed, and a piezocon penetration test was carried out step by step to confirm the increase in shear strength of the ground. Through this, it was confirmed that the shear strength of the ground is increased according to the stages of filling. In addition, by evaluating the properties of consolidation behavior, strength increase and consolidation prediction by empirical methods and theories were compared to analyze the characteristics of strength increase rate and consolidation behavior in consideration of regional characteristics.

The Application of Converts Slag for Vertical Drains (제강슬레그의 연직배수재로서의 활용에 관한 연구)

  • 김용수;정승용;한기현;김수삼
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.03b
    • /
    • pp.623-630
    • /
    • 2000
  • In this study, it was to investigate the possibility to use the converts slag, by product in producing steel as a substitute material with sand that is used fur a civil construction materials, in developing techniques to use converts slag to improve soft clay ground. To do this, it was investigated the physical and mechanical properties of the converts slag as a civil construction material. For this, cylindrical cell consolidation with a single vertical drains and large scale soil box test were performed. Through large scale soil box test, the applicability of the converts slag to the present vertical drain techniques which is dependent on sand and plastic drains was studied. As a result of that, it was found that the shape of inserted drains was maintained after completing a consolidation process of a soft clay with slag drains. In addition, we could find that the slag drains showed the similar results with sand drains in soft clay by analyzing the effect of acceleration of consolidation.

  • PDF

A Study on Models of Data Consolidation Center for Multi-Organization in Public Sector (공공부문 다기관 통합전산센터 모형에 관한 연구)

  • Lim, Sung-Mook;Lee, Yeong-Jae
    • IE interfaces
    • /
    • v.18 no.4
    • /
    • pp.418-430
    • /
    • 2005
  • We establish an efficient strategy for construction and operation of data consolidation center for multi-organization in public sector. First, we introduce important concepts on data consolidation center in public sector, and draw some success factors by analyzing several foreign and domestic cases. Second, we construct all the possible logical operational models of the center and investigate the properties and feasibility of the models. Third, we suggest a virtual operational environment for the two representative models selected by feasibility criteria among the possible logical models, and compare the two models in terms of operational cost. We also utilize AHP methodology to evaluate qualitative opinions on the two models from several experts in public information systems. As a result, we find the best alternative is the case in which all infrastructure and facilities for the center are provided by government, and common essential IT operations are integrated, associated data are consolidated and the whole operational work are outsourced to specialized IT operations service providers.

A study on coefficient of permeability due to disturbed level of clay by direct permeability test with consolidation test (압밀시험중 직접투수시험에 의한 불교란 점토의 교란정도와 투수계수에 관한 연구)

  • Kim, Jae-Young;Kim, Dong-Hyun;So, Choong-Seop;Takada, Naotoshi
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.248-252
    • /
    • 2005
  • Compressibility and deformability of clays change greatly when the clays are subjected to disturbance. These tendencies have been studied. However, the effect of the disturbance on the permeability that consists of consolidation properties has not yet been studied. In this study, relationship between permeability and volume ratio under the different degree of disturbance are experimently obtained. The results indicate that the relations are less influenced if the disturbance is less depending on the kind of soils.

  • PDF

The Applicability of Numerical Analysis Technique to The Soft Clayey Foundation Improved by Sand Drain (Sand Drain 지반에 대한 변형해석법의 적용성)

  • Lee, Jean-Soo;Lee, Moon-Soo;Jang, Chul
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.40 no.1
    • /
    • pp.96-105
    • /
    • 1998
  • Soil properties, drain conditions and numerical analysis technique have great influence upon consolidation behavior. In relevant to the above described fact, this paper aims to examining the applicability of prediction model of consolidation as well as deformation characteristics for soft clayey foundation improved by sand drain. A case study for actual foundation of Kwangyang steel works was performed. Single drain consolidation model proposed by Hansbo and Biot's consolidation theory coupled with modified Cam-clay model developed during the research were employed for the FEM numerical analysis of the foundation. Both smear effect and drain capacity were taken into account for the analysis. Finally the applicability of the newly developed technique to the behavior of foundation composed of soft clay proved satisfactory.

  • PDF

Correlation of Piezocone Dissipation Results and Compression Index (피에조콘 소산결과와 압축지수의 상관관계)

  • Park, Young-Hwan;Kang, Beong-Joon;Lee, Jun-Hwan
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1204-1211
    • /
    • 2008
  • Compression index is one of the important characteristic numbers in soft soil engineering. Since 1940's, many researchers have suggested various practical solutions to define the compression index of clay using other soil properties. But, these results are only can give us an outline of soft soil behavior. In this study, the relationships between pore water pressure dissipation test results and compression index were suggested using comparison results of both tests. This relationships are based on basic concept of consolidation phenomena, essential difference between pore water pressure dissipation test and consolidation test, and disagreements between theoretical time factor and real time factor. To identify proportional factor of proposed equation, Geotechnical investigation results of Kwang-Yang(KY) site and Busan New Port(BN) site were used. The proportional factor was 0.0031 from 20 to 50% of consolidation rate where correlation parameter($R^2$) is 0.9051.

  • PDF

A Study of Consolidation property on Soft ground Using Piezocone (피에조콘을 이용한 연약지반의 압밀특성에 관한 연구)

  • 김봉문;박성재;정경환;김찬홍;이길환
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.463-468
    • /
    • 2002
  • Based on the results obtain from the investigation of Nak-Dong River District, it was classified as very thick, soft soil deposit. Furthermore, during the construction of structures large settlements are expected. Since large settlement affects the structures life, it is very important to accurately determine the consolidation of soil based on the obtained results. In this study piezocone test and laboratory test were performed to determine the consoildtion properties of Nak-Dong River District Pusan, Gyeong-Nam province. Degree of consoildation and the coefficient of consoildation obtained from the data of piezocone test and the results of the Oedometer test were compared and analyzed. Using the results the porewater pressure coefficient($B_q$) was obtained and the relationship with the Plasticity Index was also determined. From the results of this study the effects of the degree of consolidation and consolidation coefficient, and the porewater pressure coefficient and the Plasticity Index was determined.

  • PDF