• Title/Summary/Keyword: Consolidation analysis solution

Search Result 42, Processing Time 0.03 seconds

An Investigation of Dissipation Analysis for Dilatometer & New Interpretation Method (딜라토메터 소산시험 해석에 대한 고찰 및 새로운 해석법)

  • 김영상
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.365-368
    • /
    • 2003
  • Despite of the simple equipment and operation, DMT has been widely used to obtain various soil parameters and those parameters have been successfully applied to geotechnical design practice. Among them, the estimation of horizontal coefficient of consolidation is so useful that many researchs recently have been carried out. However, simulation of the penetration of the DMT blade is complex due to the inherent difficulty on analyzing a plane strain deformation of the soil around blade. Therefore, empirical and semi-empirical methods that use the theoretical solution developed fur piezocone with some assumptions have been used to estimate the coefficient of consolidation from Dilatometer dissipation test. In this paper, coefficients of consolidation c$\_$h/ which were obtained using equivalent radius that is same area with the DMT blade and optimization technique are compared with those obtained from Oedometer test and other interpretation methods. It was found that a new method used in this study can give more precise horizontal coefficient of consolidation than other methods do.

  • PDF

Axisymmetric Nonlinear Consolidation Analysis for Drainage-installed Deposit Considering Secondary Compression (배수재가 설치된 연약지반의 2차압축을 고려한 축대칭 비선형 압밀해석)

  • Kim Yun-Tae
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.3
    • /
    • pp.133-140
    • /
    • 2005
  • In order to accelerate the rate of consolidation settlement and gain a required shear strength for a given soft clay deposit, vertical drain method combined with a preloading technique has been widely applied. In this paper, a theory of axisymmetric nonlinear consolidation fer drainage-installed deposit, which considers secondary compression (or creep) during primary consolidation, as well as the variations of compressibility and permeability during the consolidation process, has been developed. A computer program named AXICON based on Hypothesis B fur the analysis of axisymmetric nonlinear consolidation was developed by adopting finite difference method. The results of AS(ICON were compared with Hansbo's solution based on Hypothesis A, as well as in-situ settlements and pore pressures measured in test embankment of Ska-Edeby. The results indicated that Hypothesis A usually underestimated the in-situ settlement and Hypothesis B was considered to be logically correct. It was also shown that one may able to appropriately predict the real in-situ behaviors using the proposed program.

Applicability of Settlement Prediction Methods to Selfweight Consolidated Ground (자중압밀지반에 대한 침하예측기법의 적용성)

  • Jun, Sang-Hyun;Jeon, Jin-Yong;Yoo, Nam-Jae
    • Journal of Industrial Technology
    • /
    • v.28 no.B
    • /
    • pp.91-99
    • /
    • 2008
  • Applicability of existing methods of predicting consolidation settlement was assessed by analyzing results of centrifuge tests modelling self-weight consolidation of soft marine clay. From extensive literature review about self-weight consolidation of soft marine clays located in southern coast in Korea, constitutive relationships of void ratio-effective stress-permeability and typical self-weight consolidation curves with time were obtained by centrifuge model experiments. For the condition of surcharge loading, exact solution of consolidation settlement curve was obtained by Terzaghi's consolidation theory and was compared with the results predicted by currently available methods such as Hyperbolic method, Asaoka's method, Hoshino's method and ${\sqrt{S}}$ method. All methods were found to have their own inherent error to predict final consolidation settlement. From results of analyzing the self-weight consolidation with time by using those methods, Asaoka's method predicted the best. Hyperbolic method predicted relatively well in error range of 2~24% for the case of showing the linearity in the relationship between T vs T/S in the stage of consolidation degree of 60~90 %. For the case of relation curve of T vs $T/S^2$ showing the lineality after the middle stage, error range from Hoshino method was close to those from Hyperbolic method. However, Hoshino method is not able to predict the final settlement in the case of relation curve of T vs $T/S^2$ being horizontal. For the given data about self-weight consolidation after the middle stage, relation curve of T vs T/S from ${\sqrt{S}}$ method shows the better linearity than that of T vs $T/{\sqrt{s}}$ from Hyperbolic method.

  • PDF

Consolidation Behaviour of Dredged Clay Ground Improved by Horizontal Drain Method (수평배수공법에 의해 개량된 준설점토지반의 압밀거동에 관한 연구)

  • 김형주;원명수
    • Geotechnical Engineering
    • /
    • v.13 no.1
    • /
    • pp.137-146
    • /
    • 1997
  • In this study, a large consolidation test was carried out to estimate the consolidation behaviour of dredged clay ground improved by horizontal drain using plastic board drain with a vacuum pressure. The test results were analyzed by a numerical simulation using potential consolidation theory applied to a hollow cylinder. The rapid decreases in pore pressure and the drain speed in the plastic board indicate that the consolidation occurred quickly after the vacuum state was applied to the test soil. According to the numerical analysis obtained by applying the linear potential consolidation theory to a clay hollow cylinder with external radial drainage, the pore pressure is affected by the strain and the permeability of the soil rather than by the diffusion types. Therefore, measured surface settlement agreed with the numerical solution at the point where consolidation pressure increasing rate u: -0.5. Also the behaviour of the clay layer settlement in the place where the drain was installed was similar to that shown in Barron's consolidation theory. Finally, the design and construction procedure including the selection of the appropriate arrangement of horizontal drains were discussed based on the results of the laboratory tutsts. It is also shown that the potential consolidation theory make it possible to predict consolidation behaviour in the field using horizontal drains exactly.

  • PDF

Analysis Method for Non-Linear Finite Strain Consolidation for Soft Dredged Soil Deposit - Part II: Analysis Method and Craney Island Case Study (초연약 준설 매립지반의 비선형 유한변형 압밀해석기법 - Part II: 해석기법과 Craney Island 사례분석)

  • Choi, Hang-Seok;Kwak, Tae-Hoon;Lee, Chul-Ho;Lee, Dong-Seop;Stark, T.D.
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.11
    • /
    • pp.5-15
    • /
    • 2011
  • This paper presents two analysis methods for characterizing the non-linear finite strain consolidation behavior of highly deformable dredged soil deposits along with the fundamental parameters obtained in the companion paper; that is, the zero effective stress void ratio, the non-linear relationships of void ratio-effective stress and void ratio-hydraulic conductivity. The simplified Morris's analytical solution (2002) and the widely recognized numerical program, PSDDF (primary Consolidation, Secondary Compression, and Desiccation of Dredged Fill) for both single and double drainage conditions are adopted in this paper to verify a series of laboratory experiments for self-weight consolidation of the Incheon clay and Kaolinite. The comparisons show that the analysis methods proposed herein can properly simulate the long-term non-linear finite strain consolidation behavior for dredged soils in the field. In addition, a case study for the artificial Craney Island has been conducted to illustrate the importance of obtaining appropriate non-linear finite strain consolidation parameters and the applicability of PSDDF in promoting dredged soil disposal.

A Numerical Study on Thermo-hydro-mechanical Coupling in Continuum Rock Mass Based on the Biot′s Consolidation Theory (Biot의 압밀 이론에 근거한 연속체 암반의 열-수리-역학 상호작용의 수치적 연구)

  • 이희석;양주호
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 2000.09a
    • /
    • pp.105-115
    • /
    • 2000
  • As large underground projects such as radioactive waste disposal, hot water and heat storage, and geothermal energy become influential, the study, which consider all aspects of thermics, hydraulics and mechanics would be needed. Thermo Hydro-Mechanical coupling analysis is one of the most complex numerical technique because it should be implemented with the combined three governing equations to analyze the behavior of rock mass. In this study, finite element code, which is based on Biot's consolidation theory, was developed to analyze the thermo-hydro-mechanical coupling in continuum rock mass. To verify the implemented program, one-dimensional consolidation model under the isothermal and non-isothermal conditions was analyzed and was compared with the analytic solution. The parametric study on two-dimensional consolidation was also performed and the effects of several factors such as poisson's ratio and hydraulic anisotropy on rock mass behavior were investigated. In the future, this program would be revised to be used for analysis of general discontinuous media with incorporating discrete joint model.

  • PDF

A Numerical Study on Thermo-hydro-mechanical Coupling in Continuum Rock Mass Based on the Biot's Consolidation Theory (Biot의 압밀 이론에 근거한 연속체 암반의 열-수리-역학 상호작용의 수치적 연구)

  • 이희석;양주호
    • Tunnel and Underground Space
    • /
    • v.10 no.3
    • /
    • pp.355-365
    • /
    • 2000
  • As large underground projects such as radioactive waste disposal, hot water and heat storage, and geothermal energy become influential, the study, which consider all aspects of thermics, hydraulics and mechanics would be needed. Thermo-Hydro-Mechanical coupling analysis is one of the most complex numerical technique because it should be implemented with the combined three governing equations to analyze the behavior of rock mass. In this study, finite element code, which is based on Biot's consolidation theory, was developed to analyze the thermo-hydro-mechanical coupling in continuum rock mass. To verify the implemented program, one-dimensional consolidation model under the isothermal and non-isothermal conditions was analyzed and was compared with the analytic solution. The parametric study on two-dimensional consolidation was also performed and the effects of several factors such as poisson's ratio and hydraulic anisotropy on rock mass behavior were investigated. In the future, this program would be revised to be used for analysis of general discontinuous media with incorporating discrete joint model.

  • PDF

Numerical analysis of vertical drains accelerated consolidation considering combined soil disturbance and visco-plastic behaviour

  • Azari, Babak;Fatahi, Behzad;Khabbaz, Hadi
    • Geomechanics and Engineering
    • /
    • v.8 no.2
    • /
    • pp.187-220
    • /
    • 2015
  • Soil disturbance induced by installation of mandrel driven vertical drains decreases the in situ horizontal hydraulic conductivity of the soil in the vicinity of the drains, decelerating the consolidation rate. According to available literature, several different profiles for the hydraulic conductivity variation with the radial distance from the vertical drain, influencing the excess pore water pressure dissipation rate, have been identified. In addition, it is well known that the visco-plastic properties of the soil also influence the excess pore water pressure dissipation rate and consequently the settlement rate. In this study, a numerical solution adopting an elastic visco-plastic model with nonlinear creep function incorporated in the consolidation equations has been developed to investigate the effects of disturbed zone properties on the time dependent behaviour of soft soil deposits improved with vertical drains and preloading. The employed elastic visco-plastic model is based on the framework of the modified Cam-Clay model capturing soil creep during excess pore water pressure dissipation. Besides, nonlinear variations of creep coefficient with stress and time and permeability variations during the consolidation process are considered. The predicted results have been compared with V$\ddot{a}$sby test fill measurements. According to the results, different variations of the hydraulic conductivity profile in the disturbed zone result in varying excess pore water pressure dissipation rate and consequently varying the effective vertical stresses in the soil profile. Thus, the creep coefficient and the creep strain limit are notably influenced resulting in significant changes in the predicted settlement rate.

Effect of Side Friction on Consolidation Test of Normally Consolidated Kaolinite Slurry (정규압밀된 연약점토의 압밀시험시 측면 마찰의 영향)

  • Lee, Jangguen;Fox, Patrick J.
    • Journal of the Korean GEO-environmental Society
    • /
    • v.9 no.3
    • /
    • pp.61-68
    • /
    • 2008
  • Side friction is often neglected in the analysis of the results of a consolidation test when the specimen has a high ratio of diameter to height. As the height of a specimen increases, however, side friction becomes important. This paper presents an investigation of the effect of side friction on consolidation test results for normally consolidated kaolinite slurry. Consolidation tests were performed to obtain settlement, pore pressure, compressibility, and hydraulic conductivity of kaolinite slurry. The compressibility relationship is corrected for side friction using a modified form of Taylor (1942) analytical solution. Numerical simulations using the CS2 piecewise-linear model are compared with settlement and excess pore pressure measurements. Experimental results show improved agreement with a modified CS2 model in which the effect of side friction is considered. The numerical and experimental results indicate that the side friction is an important factor affecting the rate of consolidation as well as the compressibility relationship for the specimen.

  • PDF

The Aging Effect of Dredging Clayey Soil on the Consolidation Characteristics (준설점성토의 압밀특성에 미치는 시간효과)

  • 김형주
    • Geotechnical Engineering
    • /
    • v.10 no.1
    • /
    • pp.71-82
    • /
    • 1994
  • According to the field measurement of dredging-reclaimed land, the actual self-weight consolidation settlement has been frequently reported to be less than the predicted values based on the laboratory tests results. The author estimates that one of the reasons is the reduction of the compressibility due to the sedimentation of the dredging material, Furthemore, the aging effect is ignored in the consolidation characteristics of the very low stress range as a pump dredging-reclaimed land. In this paper, a series of seepage consotidation tests has been carried out by applying the seepage force to the specimen prepared by sedimentation in consolidmeter in order to clarflfy the aging-effect on the compressibility of dredging clayey soil, Also, with a view to overcome unstable consolidation solution occurring in the case where the initial water content is higher as pumpdredging reclaimed land, the finite difference analysis technique using predictorforrector method is suggested that it gets good agreement with ezperimental results. Finally, the compressibility of the dredging clayey soil is depended on self-weight consolidation time.

  • PDF