• Title/Summary/Keyword: Conservancy

Search Result 104, Processing Time 0.029 seconds

An investigation into the effects of voids, inclusions and minor cracks on major crack propagation by using XFEM

  • Jiang, Shouyan;Du, Chengbin;Gu, Chongshi
    • Structural Engineering and Mechanics
    • /
    • v.49 no.5
    • /
    • pp.597-618
    • /
    • 2014
  • For the structures containing multiple discontinuities (voids, inclusions, and cracks), the simulation technologies in the framework of extended finite element method (XFEM) are discussed in details. The level set method is used for representing the location of inner discontinuous interfaces so that the mesh does not need to align with these discontinuities. Several illustrations have been given to verify that the implemented XFEM program is effective. Then, the implemented XFEM program is used to investigate the effects of the voids, inclusions, and minor cracks on the path of major crack propagation. For a plate containing cracks and voids, two possibly crack path can be observed: i) the crack propagates into the void; ii) the crack initially curves towards the void, then, the crack reorients itself and propagates along its original orientation. For a plate with a soft inclusion, the final predicted crack paths tend to close with the inclusion, and an evident difference of crack paths can be observed with different inclusion material properties. However, for a plate with a hard inclusion, the paths tend to away from the inclusion, and a slightly difference of crack paths can only be seen with different inclusion material properties. For a plate with several minor cracks, the trend of crack paths can still be described as that the crack initially curves towards these minor cracks, and then, the crack reorients itself and propagates almost horizontally along its original orientation.

COMPREHENSIVE ASSESSMENT MODEL OF ECOLOGICAL RIPARIAN ZONE

  • Xia, Ji-Hong;Wu, Wei;Yan, Zhong-Min
    • Water Engineering Research
    • /
    • v.6 no.4
    • /
    • pp.169-178
    • /
    • 2005
  • Comprehensive assessment of ecological riparian zone is to analyze and evaluate the status of riparian zone ecosystem. The existing problem of the ecosystem can be found through the assessment. The AHP-FUZZY method used in the assessment is based on the hierarchy model of index, grade model of object, and attribution degree of index. Accordingly, the four models have been discussed and presented from the aspect of the stability, landscape, eco-health and eco-safety of riparian zone.

  • PDF

Dynamic response and waterproof property of tunnel segmental lining subjected to earthquake action

  • Yan, Qixiang;Bao, Rui;Chen, Hang;Li, Binjia;Chen, Wenyu;Dai, Yongwen;Zhou, Hongyuan
    • Earthquakes and Structures
    • /
    • v.17 no.4
    • /
    • pp.411-424
    • /
    • 2019
  • In this study, a numerical model of a shield tunnel with an assembled segmental lining was built. The seismic response of the segmental lining of the section of the shield tunnel in Line 1 of the Chengdu Metro is analyzed as it passes through the interface of sand-cobble and mudstone layers. To do so, the node-stress seismic-motion input method was used to input the seismic motion measured during the 2008 Wenchuan earthquake, and the joint openings and dislocations associated with the earthquake action were obtained. With reference to the Ethylene-Propylene-Diene Monomer (EPDM) sealing gaskets used in the shield tunnels in the Chengdu Metro, numerical simulation was applied to analyze the contact pressure along the seepage paths and the waterproof property under different joint openings and dislocations. A laboratory test on the elastic sealing gasket was also conducted to study its waterproof property. The test results accord well with the numerical results and the occurrence of water seepage in the section of the shield tunnel in Line 1 of the Chengdu Metro during the 2008 Wenchuan earthquake was verified. These research results demonstrate the deformation of segmental joint under earthquake, also demonstrate the relationship between segmental joint deformation and waterproof property.

Simulation of the fracture of heterogeneous rock masses based on the enriched numerical manifold method

  • Yuan Wang;Xinyu Liu;Lingfeng Zhou;Qi Dong
    • Geomechanics and Engineering
    • /
    • v.34 no.6
    • /
    • pp.683-696
    • /
    • 2023
  • The destruction and fracture of rock masses are crucial components in engineering and there is an increasing demand for the study of the influence of rock mass heterogeneity on the safety of engineering projects. The numerical manifold method (NMM) has a unified solution format for continuous and discontinuous problems. In most NMM studies, material homogeneity has been assumed and despite this simplification, fracture mechanics remain complex and simulations are inefficient because of the complicated topology updating operations that are needed after crack propagation. These operations become computationally expensive especially in the cases of heterogeneous materials. In this study, a heterogeneous model algorithm based on stochastic theory was developed and introduced into the NMM. A new fracture algorithm was developed to simulate the rupture zone. The algorithm was validated for the examples of the four-point shear beam and semi-circular bend. Results show that the algorithm can efficiently simulate the rupture zone of heterogeneous rock masses. Heterogeneity has a powerful effect on the macroscopic failure characteristics and uniaxial compressive strength of rock masses. The peak strength of homogeneous material (with heterogeneity or standard deviation of 0) is 2.4 times that of heterogeneous material (with heterogeneity of 11.0). Moreover, the local distribution of parameter values can affect the configuration of rupture zones in rock masses. The local distribution also influences the peak value on the stress-strain curve and the residual strength. The post-peak stress-strain curve envelope from 60 random calculations can be used as an estimate of the strength of engineering rock masses.

Limit analysis of a shallow subway tunnel with staged construction

  • Yu, Shengbing
    • Geomechanics and Engineering
    • /
    • v.15 no.5
    • /
    • pp.1039-1046
    • /
    • 2018
  • This paper presents a limit analysis of the series of construction stages of shallow tunneling method by investigating their respective safety factors and failure mechanisms. A case study for one particular cross-section of Beijing Subway Line 7 is undertaken, with a focus on the effects of multiple soil layers and construction sequencing of dual tunnels. Results show that using the step-excavation technique can render a higher safety factor for the excavation of a tunnel compared to the entire cross-section being excavated all at once. The failure mechanisms for each different construction stage are discussed and corresponding key locations are suggested to monitor the safety during tunneling. Simultaneous excavation of dual tunnels in the same cross-section should be expressly avoided considering their potential negative interactions. The normal and shear forces as well as bending moment of the primary lining and locking anchor pipe are found to reach their maximum value at Stage 6, before closure of the primary lining. Designing these struts should consider the effects of different construction stages of shallow tunneling method.

Primary Ecological Effect Analysis of Emergent Water Transportation in the Lower Reaches of Tarim River Based on RS Technology

  • Xu, Mei;Huang, ShiFeng;He, Yu
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1301-1303
    • /
    • 2003
  • Tarim River is the biggest inland river in China, its problem of eco-environment is worsening in the lower reach. For keeping this trend within limits, the measure of emergent water transportation to the lower reach was taken. In this paper, the remote sensing technology will be applied to the analysis of eco-environment effect after water transportation. The result is: the vegetation index and cover ratio increased but not markedly, the eco-environment situation can't been improved obviously up to now. It is some effective but temporary . The continuity, quality and quality of water source for the Tarim River must been ensured.

  • PDF

Groundwater Movement Analysis according to Groundwater-Surface Water Interaction (지표수-지하수 상호관계에 따른 지하수 유동분석)

  • Ahn, Seung-Seop;Park, Dong-Il;Jung, Do-Joon;Seok, Dong-Ki
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.1945-1949
    • /
    • 2009
  • It is fact that many research is advanced about management and security of water resources according to serious problem which is raising its head that conservancy and management of water resources development of population and industry. Ground water of water resources is the source of water resources security with surface water, so it have to be continuous exploitation and research however, until now it researched in separate way from surface water, and it become connect each other for the research in actual condition in recent times. The research analyzed the recharge at the SWAT model, interpreted by used GMS/MODFLOW model for ground water flow change.

  • PDF

Pulse-Pre Pump Brillouin Optical Time Domain Analysis-based method monitoring structural multi-direction strain

  • Su, Huaizhi;Yang, Meng;Wen, Zhiping
    • Structural Monitoring and Maintenance
    • /
    • v.3 no.2
    • /
    • pp.145-155
    • /
    • 2016
  • The Pulse-Pre Pump Brillouin Optical Time Domain Analysis (PPP-BOTDA) technique is introduced to implement the multi-direction strain measurement. The monitoring principle is stated. The layout scheme of optical fibers is proposed. The temperature compensation formula and its realizing method are given. The experiments, under tensile load, combined bending and tensile load, are implemented to validate the feasibility of the proposed method. It is shown that the PPP-BOTDA technique can be used to discriminate the multi-direction strains with high spatial resolution and precision.

Fractal behavior identification for monitoring data of dam safety

  • Su, Huaizhi;Wen, Zhiping;Wang, Feng
    • Structural Engineering and Mechanics
    • /
    • v.57 no.3
    • /
    • pp.529-541
    • /
    • 2016
  • Under the interaction between dam body, dam foundation and external environment, the dam structural behavior presents the time-varying nonlinear characteristics. According to the prototypical observations, the correct identification on above nonlinear characteristics is very important for dam safety control. It is difficult to implement the description, analysis and diagnosis for dam structural behavior by use of any linear method. Based on the rescaled range analysis approach, the algorithm is proposed to identify and extract the fractal feature on observed dam structural behavior. The displacement behavior of one actual dam is taken as an example. The fractal long-range correlation for observed displacement behavior is analyzed and revealed. The feasibility and validity of the proposed method is verified. It is indicated that the mechanism evidence can be provided for the prediction and diagnosis of dam structural behavior by using the fractal identification method. The proposed approach has a high potential for other similar applications.

A foundation treatment optimization approach study in hydraulic engineering

  • Zhang, Tianye;Liu, Shixia
    • Earthquakes and Structures
    • /
    • v.15 no.2
    • /
    • pp.215-225
    • /
    • 2018
  • To reach a better foundation treatment project, an optimized analysis of composite foundation was studied in the field of hydraulic engineering. Its unique characteristics in hydraulic engineering were concluded. And, the overall and detailed analysis of the composite foundation model established was carried out. The index parameters of the vertical reinforced rigid pile composite foundation were formulated. Further, considering the unique role of cushion in hydraulic engineering, its penetration and regularity were analyzed. Then, comparative and optimized analyses of cushion multistage physical dimensions and multistage material characteristics were established. The parameters of the piles distance were optimized and the multilevel scientific and reasonable parameters information was obtained. Based on the information of these parameters, the practical application was verified. It effectively supported the effective application of vertical reinforcement rigid pile composite foundation in hydraulic engineering. The service mechanism of composite foundation was fully analyzed.