• 제목/요약/키워드: Consecutive Explosions

검색결과 3건 처리시간 0.018초

전산수치해석을 이용한 일방향 철근콘크리트 슬래브의 연속폭발 누적피해 평가기법 연구 (Numerical Investigation for Cumulative Damage Assessment of a One-way RC Slab subjected to Consecutive Explosions)

  • 지훈;성승훈;정진웅;최윤수
    • 한국시뮬레이션학회논문지
    • /
    • 제29권2호
    • /
    • pp.119-127
    • /
    • 2020
  • 본 연구에서는 해석적 방법을 이용하여 연속폭발 하중을 받는 구조물의 거동을 분석하였다. 구조물은 양단이 고정된 축소형 일방향 철근콘크리트 슬래브를 사용하였으며, 유한요소 해석을 위해서 상용 소프트웨어인 LS-DYNA를 사용하였다. 누적피해 평가를 위한 해석을 수행하기에 앞서, 해석 모델의 검증을 위해 일방향 철근콘크리트 슬래브의 단일폭발 실험을 수행하였다. 누적피해 해석에서는 이상적인 연속폭발 하중이 구조물에 적용되고, 최대변위를 기준으로 누적 피해평가를 수행하였다. 해석 결과로부터, 연속폭발 하중을 받는 철근콘크리트 슬래브의 최대 누적변위는 위험한 피해 한계까지 일정하게 증가하는 경향을 보였다.

M&S를 통한 지하탄약고의 격실 방폭문 내폭력 산정 연구 (A Study on the Calculation of the Design Loads for Blast Doors of Underground Ammunition Facilities Using M&S)

  • 박영준;백종혁;손기영
    • 한국군사과학기술학회지
    • /
    • 제19권3호
    • /
    • pp.302-310
    • /
    • 2016
  • An underground ammunition facility requires less quantity distances than the aboveground counterpart. However, chamber blast doors which resist the high blast-pressures are necessary for prevention of the consecutive explosions when an accident explosion occurs at any chamber. This paper aims to propose an procedure for calculation of the design loads for the chamber blast doors. Modeling considerations are drawn through analyzing the influences of the geometrical shapes and mechanical properties of rocks on the propagation of pressure wave along with the tunnels. Additionally, the design loads for the chamber blast doors in a newly-built underground ammunition facility are calculated based on the proposed procedure.

Effect of Perfluorobutane Microbubbles on Radiofrequency Ablation for Hepatocellular Carcinoma: Suppression of Steam Popping and Its Clinical Implication

  • Dong Young Jeong;Tae Wook Kang;Ji Hye Min;Kyoung Doo Song;Min Woo Lee;Hyunchul Rhim;Hyo Keun Lim;Dong Hyun Sinn;Heewon Han
    • Korean Journal of Radiology
    • /
    • 제21권9호
    • /
    • pp.1077-1086
    • /
    • 2020
  • Objective: To evaluate the effect of perfluorobutane microbubbles (Sonazoid®, GE Healthcare) on steam popping during radiofrequency (RF) ablation for treating hepatocellular carcinoma (HCC), and to assess whether popping affects treatment outcomes. Materials and Methods: The institutional review board approved this retrospective study, which included 90 consecutive patients with single HCC, who received percutaneous RF ablation as the first-line treatment. The patients were divided into two groups, based on the presence or absence of the popping phenomenon, which was defined as an audible sound with a simultaneous sudden explosion within the ablation zone as detected via ultrasonography during the procedure. The factors contributing to the popping phenomenon were identified using multivariable logistic regression analysis. Local tumor progression (LTP) and disease-free survival (DFS) were assessed using the Kaplan-Meier method with the log-rank test for performing comparisons between the two groups. Results: The overall incidence of the popping phenomenon was 25.8% (24/93). Sonazoid® was used in 1 patient (4.2%) in the popping group (n = 24), while it was used in 15 patients (21.7%) in the non-popping group (n = 69). Multivariable analysis revealed that the use of Sonazoid® was the only significant factor for absence of the popping phenomenon (odds ratio = 0.10, p = 0.048). There were no significant differences in cumulative LTP and DFS between the two groups (p = 0.479 and p = 0.424, respectively). Conclusion: The use of Sonazoid® has a suppressive effect on the popping phenomenon during RF ablation in patients with HCC. However, the presence of the popping phenomenon may not affect clinical outcomes.