DOI QR코드

DOI QR Code

Effect of Perfluorobutane Microbubbles on Radiofrequency Ablation for Hepatocellular Carcinoma: Suppression of Steam Popping and Its Clinical Implication

  • Dong Young Jeong (Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine) ;
  • Tae Wook Kang (Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine) ;
  • Ji Hye Min (Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine) ;
  • Kyoung Doo Song (Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine) ;
  • Min Woo Lee (Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine) ;
  • Hyunchul Rhim (Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine) ;
  • Hyo Keun Lim (Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine) ;
  • Dong Hyun Sinn (Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine) ;
  • Heewon Han (Statistics and Data Center, Research Institute for Future Medicine, Samsung Medical Center)
  • Received : 2019.12.05
  • Accepted : 2020.03.16
  • Published : 2020.09.01

Abstract

Objective: To evaluate the effect of perfluorobutane microbubbles (Sonazoid®, GE Healthcare) on steam popping during radiofrequency (RF) ablation for treating hepatocellular carcinoma (HCC), and to assess whether popping affects treatment outcomes. Materials and Methods: The institutional review board approved this retrospective study, which included 90 consecutive patients with single HCC, who received percutaneous RF ablation as the first-line treatment. The patients were divided into two groups, based on the presence or absence of the popping phenomenon, which was defined as an audible sound with a simultaneous sudden explosion within the ablation zone as detected via ultrasonography during the procedure. The factors contributing to the popping phenomenon were identified using multivariable logistic regression analysis. Local tumor progression (LTP) and disease-free survival (DFS) were assessed using the Kaplan-Meier method with the log-rank test for performing comparisons between the two groups. Results: The overall incidence of the popping phenomenon was 25.8% (24/93). Sonazoid® was used in 1 patient (4.2%) in the popping group (n = 24), while it was used in 15 patients (21.7%) in the non-popping group (n = 69). Multivariable analysis revealed that the use of Sonazoid® was the only significant factor for absence of the popping phenomenon (odds ratio = 0.10, p = 0.048). There were no significant differences in cumulative LTP and DFS between the two groups (p = 0.479 and p = 0.424, respectively). Conclusion: The use of Sonazoid® has a suppressive effect on the popping phenomenon during RF ablation in patients with HCC. However, the presence of the popping phenomenon may not affect clinical outcomes.

Keywords

References

  1. Global Burden of Disease Liver Cancer Collaboration; Akinyemiju T, Abera S, Ahmed M, Alam N, Alemayohu MA, Allen C, et al. The burden of primary liver cancer and underlying etiologies from 1990 to 2015 at the global, regional, and national level: results from the global burden of disease study 2015. JAMA Oncol 2017;3:1683-1691
  2. European Association for the Study of the Liver. EASL clinical practice guidelines: management of hepatocellular carcinoma. J Hepatol 2018;69:182-236
  3. Mori Y, Tamai H, Shingaki N, Moribata K, Shiraki T, Deguchi H, et al. Diffuse intrahepatic recurrence after percutaneous radiofrequency ablation for solitary and small hepatocellular carcinoma. Hepatol Int 2009;3:509-515
  4. Kang TW, Lim HK, Lee MW, Kim YS, Rhim H, Lee WJ, et al. Aggressive intrasegmental recurrence of hepatocellular carcinoma after radiofrequency ablation: risk factors and clinical significance. Radiology 2015;276:274-285
  5. Angonese C, Baldan A, Cillo U, D'Alessandro A, De Antoni M, De Giorgio M, et al. Complications of radiofrequency thermal ablation in hepatocellular carcinoma: what about "explosive" spread? Gut 2006;55:435-436
  6. Nicoli N, Casaril A, Abu Hilal M, Mangiante G, Marchiori L, Ciola M, et al. A case of rapid intrahepatic dissemination of hepatocellular carcinoma after radiofrequency thermal ablation. Am J Surg 2004;188:165-167
  7. Takada Y, Kurata M, Ohkohchi N. Rapid and aggressive recurrence accompanied by portal tumor thrombus after radiofrequency ablation for hepatocellular carcinoma. Int J Clin Oncol 2003;8:332-335
  8. Pua U. Rapid intra-hepatic dissemination of hepatocellular carcinoma with pulmonary metastases following combined loco-regional therapy. Korean J Radiol 2013;14:640-642
  9. Kang TW, Lim HK, Cha DI. Aggressive tumor recurrence after radiofrequency ablation for hepatocellular carcinoma. Clin Mol Hepatol 2017;23:95-101
  10. Choe J, Kim KW, Kim YI, Chung JW, Huh J, Park J, et al. Feasibility of a low-power radiofrequency ablation protocol to delay steam popping. J Vasc Interv Radiol 2016;27:268-274
  11. Kotoh K, Nakamuta M, Morizono S, Kohjima M, Arimura E, Fukushima M, et al. A multi-step, incremental expansion method for radio frequency ablation: optimization of the procedure to prevent increases in intra-tumor pressure and to reduce the ablation time. Liver Int 2005;25:542-547
  12. Min JH, Lim HK, Lim S, Kang TW, Song KD, Choi SY, et al. Radiofrequency ablation of very-early-stage hepatocellular carcinoma inconspicuous on fusion imaging with B-mode US: value of fusion imaging with contrast-enhanced US. Clin Mol Hepatol 2014;20:61-70
  13. Min JH, Kim YS, Rhim H, Lee MW, Kang TW, Song KD, et al. Effect of parenchymal uptake of perfluorobutane microbubbles (Sonazoid®) on radiofrequency ablation of the liver: in vivo experimental study. Liver Int 2016;36:1187-1195
  14. Ahmed M, Solbiati L, Brace CL, Breen DJ, Callstrom MR, Charboneau JW, et al. Image-guided tumor ablation: standardization of terminology and reporting criteria-a 10- year update. Radiology 2014;273:241-260
  15. Lee S, Kang TW, Cha DI, Song KD, Lee MW, Rhim H, et al. Radiofrequency ablation vs. surgery for perivascular hepatocellular carcinoma: propensity score analyses of longterm outcomes. J Hepatol 2018;69:70-78
  16. Kang TW, Lim HK, Lee MW, Kim YS, Rhim H, Lee WJ, et al. Long-term therapeutic outcomes of radiofrequency ablation for subcapsular versus nonsubcapsular hepatocellular carcinoma: a propensity score matched study. Radiology 2016;280:300-312
  17. Iida H, Aihara T, Ikuta S, Yamanaka N. Effectiveness of impedance monitoring during radiofrequency ablation for predicting popping. World J Gastroenterol 2012;18:5870-878
  18. Fernandes ML, Lin CC, Lin CJ, Chen WT, Lin SM. Prospective study of a 'popping' sound during percutaneous radiofrequency ablation for hepatocellular carcinoma. J Vasc Interv Radiol 2010;21:237-244
  19. Ni Y, Miao Y, Mulier S, Yu J, Baert AL, Marchal G. A novel "cooled-wet" electrode for radiofrequency ablation. Eur Radiol 2000;10:852-854
  20. Kotoh K, Morizono S, Kohjima M, Enjoji M, Sakai H, Nakamuta M. Evaluation of liver parenchymal pressure and portal endothelium damage during radio frequency ablation in an in vivo porcine model. Liver Int 2005;25:1217-1223
  21. Kang TW, Lim HK, Lee MW, Kim YS, Choi D, Rhim H. Firstline radiofrequency ablation with or without artificial ascites for hepatocellular carcinomas in a subcapsular location: local control rate and risk of peritoneal seeding at long-term follow-up. Clin Radiol 2013;68:e641-e651
  22. Kang TW, Kim JM, Rhim H, Lee MW, Kim YS, Lim HK, et al. Small hepatocellular carcinoma: radiofrequency ablation versus nonanatomic resection-propensity score analyses of long-term outcomes. Radiology 2015;275:908-919
  23. Livraghi T, Goldberg SN, Lazzaroni S, Meloni F, Solbiati L, Gazelle GS. Small hepatocellular carcinoma: treatment with radio-frequency ablation versus ethanol injection. Radiology 1999;210:655-661
  24. Kotoh K, Enjoji M, Arimura E, Morizono S, Kohjima M, Sakai H, et al. Scattered and rapid intrahepatic recurrences after radio frequency ablation for hepatocellular carcinoma. World J Gastroenterol 2005;11:6828-6832
  25. Song KD, Lim HK, Rhim H, Lee MW, Kang TW, Paik YH, et al. Hepatic resection vs percutaneous radiofrequency ablation of hepatocellular carcinoma abutting right diaphragm. World J Gastrointest Oncol 2019;11:227-237