• 제목/요약/키워드: Connectome

검색결과 15건 처리시간 0.02초

브레인 모사 인공지능 기술 (Brain-Inspired Artificial Intelligence)

  • 김철호;이정훈;이성엽;우영춘;백옥기;원희선
    • 전자통신동향분석
    • /
    • 제36권3호
    • /
    • pp.106-118
    • /
    • 2021
  • The field of brain science (or neuroscience in a broader sense) has inspired researchers in artificial intelligence (AI) for a long time. The outcomes of neuroscience such as Hebb's rule had profound effects on the early AI models, and the models have developed to become the current state-of-the-art artificial neural networks. However, the recent progress in AI led by deep learning architectures is mainly due to elaborate mathematical methods and the rapid growth of computing power rather than neuroscientific inspiration. Meanwhile, major limitations such as opacity, lack of common sense, narrowness, and brittleness have not been thoroughly resolved. To address those problems, many AI researchers turn their attention to neuroscience to get insights and inspirations again. Biologically plausible neural networks, spiking neural networks, and connectome-based networks exemplify such neuroscience-inspired approaches. In addition, the more recent field of brain network analysis is unveiling complex brain mechanisms by handling the brain as dynamic graph models. We argue that the progress toward the human-level AI, which is the goal of AI, can be accelerated by leveraging the novel findings of the human brain network.

Finding Needles in a Haystack with Light: Resolving the Microcircuitry of the Brain with Fluorescence Microscopy

  • Rah, Jong-Cheol;Choi, Joon Ho
    • Molecules and Cells
    • /
    • 제45권2호
    • /
    • pp.84-92
    • /
    • 2022
  • To understand the microcircuitry of the brain, the anatomical and functional connectivity among neurons must be resolved. One of the technical hurdles to achieving this goal is that the anatomical connections, or synapses, are often smaller than the diffraction limit of light and thus are difficult to resolve by conventional microscopy, while the microcircuitry of the brain is on the scale of 1 mm or larger. To date, the gold standard method for microcircuit reconstruction has been electron microscopy (EM). However, despite its rapid development, EM has clear shortcomings as a method for microcircuit reconstruction. The greatest weakness of this method is arguably its incompatibility with functional and molecular analysis. Fluorescence microscopy, on the other hand, is readily compatible with numerous physiological and molecular analyses. We believe that recent advances in various fluorescence microscopy techniques offer a new possibility for reliable synapse detection in large volumes of neural circuits. In this minireview, we summarize recent advances in fluorescence-based microcircuit reconstruction. In the same vein as these studies, we introduce our recent efforts to analyze the long-range connectivity among brain areas and the subcellular distribution of synapses of interest in relatively large volumes of cortical tissue with array tomography and superresolution microscopy.

3D 오토인코더 기반의 뇌 자기공명영상에서 다발성 경화증 병변 검출 (Multiple Sclerosis Lesion Detection using 3D Autoencoder in Brain Magnetic Resonance Images)

  • 최원준;박성수;김윤수;감진규
    • 한국멀티미디어학회논문지
    • /
    • 제24권8호
    • /
    • pp.979-987
    • /
    • 2021
  • Multiple Sclerosis (MS) can be early diagnosed by detecting lesions in brain magnetic resonance images (MRI). Unsupervised anomaly detection methods based on autoencoder have been recently proposed for automated detection of MS lesions. However, these autoencoder-based methods were developed only for 2D images (e.g. 2D cross-sectional slices) of MRI, so do not utilize the full 3D information of MRI. In this paper, therefore, we propose a novel 3D autoencoder-based framework for detection of the lesion volume of MS in MRI. We first define a 3D convolutional neural network (CNN) for full MRI volumes, and build each encoder and decoder layer of the 3D autoencoder based on 3D CNN. We also add a skip connection between the encoder and decoder layer for effective data reconstruction. In the experimental results, we compare the 3D autoencoder-based method with the 2D autoencoder models using the training datasets of 80 healthy subjects from the Human Connectome Project (HCP) and the testing datasets of 25 MS patients from the Longitudinal multiple sclerosis lesion segmentation challenge, and show that the proposed method achieves superior performance in prediction of MS lesion by up to 15%.

한국 아동 집단의 구조 뇌연결지도 (Anatomical Brain Connectivity Map of Korean Children)

  • 엄민희;박범희;박해정
    • Investigative Magnetic Resonance Imaging
    • /
    • 제15권2호
    • /
    • pp.110-122
    • /
    • 2011
  • 목적 : 본 연구의 목적은 확산텐서영상에 기반하여 한국 아동 집단의 해부학적 뇌연결성 지도를 확립하고 뇌신경망의 효율성을 평가하는 기법을 개발하는 것이다. 대상 및 방법 : 건강한 아동 12명에서 얻은 확산텐서영상과 뇌구획영상을 바탕으로 구조 연결 행렬을 구하여 집단의 구조 연결성을 평가하였다. 일표본 t-검정을 시행하여 평균적인 구조 연결성을 파악하였고 이 때 얻은 각 피험자의 백질 다발을 표준공간으로 정규화하여 집단의 해부학적 뇌연결망 지도를 확립했다. 뇌신경망의 군집정도(clustering coefficient), 평균이동거리(characteristic path length), 전체/부분 연결망 효율성(global/local efficiency) 등 연결망 속성을 계산한 후 시각화 하였다. 결과 : 연결망 측면에서 한국 아동 집단의 뇌연결성이 작은세상속성을 가짐을 밝혔다. 또한 해부학적 뇌연결망 지도를 얻었는데 대뇌 반구 내의 연결성이 높게 나타남과 뇌간과 운동/감각 영역간에 많은 신경 연결이 집중되어 있음을 확인하였다. 결론 : 한국 아동 집단의 해부학적 뇌연결망 지도를 작성하는 방법론을 제시하여 뇌를 연결성 측면에서 이해하고 발달 장애와 성인 뇌신경망의 효율성을 평가할 수 있는 기본 도구를 확립하게되었다.

알렌 마우스 브레인 아틀라스를 이용한 반자동 신경섬유지도 분석 : 여기수와 신호대잡음비간의 DTI 획득 비교 (Semi-automated Tractography Analysis using a Allen Mouse Brain Atlas : Comparing DTI Acquisition between NEX and SNR)

  • 임상진;백현만
    • 한국방사선학회논문지
    • /
    • 제14권2호
    • /
    • pp.157-168
    • /
    • 2020
  • 자기공명영상(Magnetic Resonance Image)을 이용한 구조적 연구 방법에서 뇌 구조 세분화 방법은 최근 빠르게 발전하여 구조 이미지의 자동 분할을 위한 유능한 방법론이 되었다. 특히 아틀라스 정보를 이미지에 등록해 피사체의 이미지로 전달하는 분할(Segmentation) 방법은 아틀라스(Atlas)의 정확도에 편향되기 때문에 높은 정확도를 갖고 있는 아틀라스가 필요하게 된다. 알렌 마우스 뇌 아틀라스(Allen Mouse Brain Atlas)는 마우스의 아틀라스 중에서 높은 정확도를 갖고 있어 다양한 분야에서 사용되고 있으며, 신경섬유지도(Tractography)에 필수적인 마우스 뇌구조의 정확한 좌표와 분할 정보를 제공할 수 있다. 또한 기능적 연구 방법인 뇌의 백질 경로를 재구성하는 확산텐서영상(Diffusion Tensor Image)에 대한 확률론적 신경섬유지도를 사용하여 포괄적인 뉴런 네트워크를 매핑 하였다. 인간의 뇌 연구 결과와 마우스의 뇌 연구 결과는 비교분석 할 수 있어 인간에게 적용하기 어려운 실험들을 질환이 모델링된 마우스를 통해 결과를 얻어 임상적으로 이용이 가능하기 때문에 마우스 실험의 중요성이 올라가고 있다. 하지만 마우스를 이용한 연구에서 인간과 마우스의 뇌 크기 차이로 인한 문제가 있어 동등한 영상의 질을 달성하려면 다양한 조건이 필요하게 되며, 그중 대표적으로 충분히 긴 스캔시간이 필요하게 된다. 충분히 긴 스캔시간을 확보하기 위해 본 연구에서는 마우스의 뇌를 샘플화시켜 Ex-vivo 실험이 진행되었으며, 마우스 커넥톰(Connectome) 매핑에 대한 참조를 제공하기 위해 이 연구는 아틀라스 정규화 도구인 ANTx와 확산 텐서 영상을 분석할 도구인 FSL을 사용하여 마우스 뇌의 반자동 분할 및 신경섬유지도 분석 파이프라인을 제시하여 다양한 마우스 모델에 적용하고자 했다. 또한, 신경섬유지도 분석을 위해 획득하는 확산텐서영상의 유용한 신호대 잡음비를 결정하기 위해 다양한 여기수의 영상을 획득해 비교분석하였다.