• Title/Summary/Keyword: Connecting layer

Search Result 120, Processing Time 0.028 seconds

A Historical Study on the Parcel Number and Numbering System in Korea.

  • Kim, Uk-Nam
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2000.10a
    • /
    • pp.51-65
    • /
    • 2000
  • Among legal unit of land registration, the minimum unit of land is one parcel. We give the parcel number according to numbering system to confirm the specification of the parcel. In Korea, this parcel number is used for daily life such as the sign of fixed place(address) and the property, of the place of register, of identification card and of legal action. It also plays the important role as a key item connecting the layer of other information system in organizing Land Information System. It is also valued as the sources looking for the process of developing of the country. This study will devote to cadastral history, reform and reestablishment of the country.

  • PDF

Buckling Analysis of Box-typed Structures using Adaptive Finite Elements (적응적 유한요소를 이용한 박스형 구조물의 좌굴해석)

  • Song, Myung-Kwan;Kim, Sun-Hoon
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.271-274
    • /
    • 2007
  • The finite element linear buckling analysis of folded plate structures using adaptive h-refinement methods is presented in this paper. The variable-node flat shell element used in this study possesses the drilling D.O.F. which, in addition to improvement of the element behavior, permits an easy connection to other elements with six degrees of freedom per node. The Box-typed structures can be analyzed using these developed flat shell elements. By introducing the variable node elements some difficulties associated with connecting the different layer patterns, which are common in the adaptive h-refinement on quadrilateral mesh, can be overcome. To obtain better stress field for the error estimation, the super-convergent patch recovery is used. The convergent buckling modes and the critical loads associated with these modes can be obtained.

  • PDF

Variable-node axisymmetric solid element and its application to adaptive mesh refinement

  • Choi, Chang-Koon;Lee, Eun-Jin;Lee, Wan-Hoon
    • Structural Engineering and Mechanics
    • /
    • v.11 no.4
    • /
    • pp.443-460
    • /
    • 2001
  • This paper presents an effective application of a variable-node axisymmetric solid element designated as AQV (Axisymmetric Quadrilateral Variable-node element). The variable-node element with physical midside nodes helps to overcome some problems in connecting the different layer patterns on a quadrilateral mesh in the adaptive h-refinement. This element alleviates the necessity of imposing displacement constraints on irregular (hanging) nodes in order to enforce the inter-element compatibility. Therefore, the elements with variable mid-side nodes can be used effectively in the local mesh refinement for the axisymmetric structures which have stress concentrations. A modified Gaussian quadrature should be adopted to evaluate the stiffness matrices of the variable-node elements mainly because of the slope discontinuity of assumed displacement within the elements. Some numerical examples show the usefulness of variable-node axisymmetric elements in the practical application.

Effect of underlayer electroless Ni-P plating on deposition behavior of cyanide-free electroless Au plating (비시안 무전해 Au 도금의 석출거동에 미치는 하지층 무전해 Ni-P 도금 조건의 영향)

  • Kim, DongHyun;Han, Jaeho
    • Journal of the Korean institute of surface engineering
    • /
    • v.55 no.5
    • /
    • pp.299-307
    • /
    • 2022
  • Gold plating is used as a coating of connector in printed circuit boards, ceramic integrated circuit packages, semiconductor devices and so on, because the film has excellent electric conductivity, solderability and chemical properties such as durability to acid and other chemicals. In most cases, internal connection between device and package and external terminals for connecting packaging and printed circuit board are electroless Ni-P plating followed by immersion Au plating (ENIG) to ensure connection reliability. The deposition behavior and film properties of electroless Au plating are affected by P content, grain size and mixed impurity components in the electroless Ni-P alloy film used as the underlayer plating. In this study, the correlation between electroless nickel plating used as a underlayer layer and cyanide-free electroless Au plating using thiomalic acid as a complexing agent and aminoethanethiol as a reducing agent was investigated.

Effect of the Plasma-assisted Patterning of the Organic Layers on the Performance of Organic Light-emitting Diodes

  • Hong, Yong-Taek;Yang, Ji-Hoon;Kwak, Jeong-Hun;Lee, Chang-Hee
    • Journal of Information Display
    • /
    • v.10 no.3
    • /
    • pp.111-116
    • /
    • 2009
  • In this paper, a plasma-assisted patterning method for the organic layers of organic light-emitting diodes (OLEDs) and its effect on the OLED performances are reported. Oxygen plasma was used to etch the organic layers, using the top electrode consisting of lithium fluoride and aluminum as an etching mask. Although the current flow at low voltages increased for the etched OLEDs, there was no significant degradation of the OLED efficiency and lifetime in comparison with the conventional OLEDs. Therefore, this method can be used to reduce the ohmic voltage drop along the common top electrodes by connecting the top electrode with highly conductive bus lines after the common organic layers on the bus lines are etched by plasma. To further analyze the current increase at low voltages, the plasma patterning effect on the OLED performance was investigated by changing the device sizes, especially in one direction, and by changing the etching depth in the vertical direction of the device. It was found that the current flow increase at low voltages was not proportional to the device sizes, indicating that the current flow increase does not come from the leakage current along the etched sides. In the etching depth experiment, the current flow at low voltages did not increase when the etching process was stopped in the middle of the hole transport layer. This means that the current flow increase at low voltages is closely related to the modification of the hole injection layer, and thus, to the modification of the interface between the hole injection layer and the bottom electrode.

A study on the fabrication of Y-branch for optical power distribution and its coupling properties with optical fiber (광분배를 위한 Y-branch 제작과 광파이버와의 결합특성에 관한 연구)

  • 김상덕;박수봉;윤중현;이재규;김종빈
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.12
    • /
    • pp.3277-3285
    • /
    • 1996
  • In this paper, w designed an opical power distribution device for application to an optical switching and an optical subscriber loop. We fabricated PSG thin film by LPCVD. Based on the measured index of fabricted thin film, rib-type waveguide was transformed to two-dimension by the effective index method and we simulated dispersion property to find asingle-mode condition. We found that the optimum design parameters of rib-type waveguide are:cladding layer of 3.mu.m, core layer of 3.mu.m, buffer layer of 10.mu.m, and core width of 4.mu.m. Each side of the guiding region was etched down to 4.mu.m to shape the core. We used these optimum parameters of the rib-type waveguide with branching angle of 0.5.deg. and simulted the Y-branch waveguide by the BPM simulation. Numerical loss in branching area was claculated to be 0.1581dB and equal to the total loss of the Y-branch. The loss of the fabricated Y-branch waveguide on PSG film ws 1.6dB at .lambda.=1.3.mu.m before annealing but was 1.2dB after annealing at 1000.deg. C for 10 minutes. Consequently, the loss of branching area from 3000.mu.m to 6000.mu.m in the z-direction was 0.8dB, and single-mode propagation was confirmed by measuring the near field pattern. For coupling the fabricated Y-branch waveguide with an optical fiber, we fabricated V-groove which was used as the upholder of optical fiber. An etching angle was 54.deg. and the width and depth of guiding groove was 150.mu.m, 70.mu.m, respectively. The optical fiber is inserted onto V-groove. Both the Y-branch and V-groove were connected through the index matching oil. Coupling loss after connecting Y-branch and the optical fiber on V-groove was 0.34dB and that after injecting index mateching oil was 0.14dB.

  • PDF

Use of finite and infinite elements in static analysis of pavement

  • Patil, V.A.;Sawant, V.A.;Deb, Kousik
    • Interaction and multiscale mechanics
    • /
    • v.3 no.1
    • /
    • pp.95-110
    • /
    • 2010
  • In recent years, study of the static response of pavements to moving vehicle and aircraft loads has received significant attention because of its relevance to the design of pavements and airport runways. The static response of beams resting on an elastic foundation and subjected to moving loads was studied by several researchers in the past. However, most of these studies were limited to steady-state analytical solutions for infinitely long beams resting on Winkler-type elastic foundations. Although the modelling of subgrade as a continuum is more accurate, such an approach can hardly be incorporated in analysis due to its complexity. In contrast, the two-parameter foundation model provides a better way for simulating the underlying soil medium and is conceptually more appealing than the one-parameter (Winkler) foundation model. The finite element method is one of the most suitable mathematical tools for analysing rigid pavements under moving loads. This paper presents an improved solution algorithm based on the finite element method for the static analysis of rigid pavements under moving vehicular or aircraft loads. The concrete pavement is discretized by finite and infinite beam elements, with the latter for modelling the infinity boundary conditions. The underlying soil medium is modelled by the Pasternak model allowing the shear interaction to exist between the spring elements. This can be accomplished by connecting the spring elements to a layer of incompressible vertical elements that can deform in transverse shear only. The deformations and forces maintaining equilibrium in the shear layer are considered by assuming the shear layer to be isotropic. A parametric study is conducted to investigate the effect of the position of moving loads on the response of pavement.

Experimental study on shear, tensile, and compression behaviors of composite insulated concrete sandwich wall

  • Zhang, Xiaomeng;Zhang, Xueyong;Liu, Wenting;Li, Zheng;Zhang, Xiaowei;Zhou, Yilun
    • Advances in concrete construction
    • /
    • v.11 no.1
    • /
    • pp.33-43
    • /
    • 2021
  • A new type of composite insulated concrete sandwich wall (ICS-wall), which is composed of a triangle truss steel wire network, an insulating layer, and internal and external concrete layers, is proposed. To study the mechanical properties of this new ICS-wall, tensile, compression, and shearing tests were performed on 22 specimens and tensile strength and corrosion resistance tests on 6 triangle truss joints. The variables in these tests mainly include the insulating plate material, the thickness of the insulating plate, the vertical distance of the triangle truss framework, the triangle truss layout, and the connecting mode between the triangle truss and wall and the material of the triangle truss. Moreover, the failure mode, mechanical properties, and bearing capacity of the wall under tensile, shearing, and compression conditions were analyzed. Research results demonstrate that the concrete and insulating layer of the ICS-wall are pulling out, which is the main failure mode under tensile conditions. The ICS-wall, which uses a graphite polystyrene plate as the insulating layer, shows better tensile properties than the wall with an ordinary polystyrene plate. The tensile strength and bearing capacity of the wall can be improved effectively by strengthening the triangle truss connection and shortening the vertical distances of the triangle truss. The compression capacity of the wall is mainly determined by the compression capacity of concrete, and the bonding strength between the wall and the insulating plate is the main influencing factor of the shearing capacity of the wall. According to the tensile strength and corrosion resistance tests of Austenitic stainless steel, the bearing capacity of the triangle truss does not decrease after corrosion, indicating good corrosion resistance.

Study on Minimizing Electromagnetic Interference to Capture Vortex Structures in Turbulent Boundary Layer (경계층 유속 정밀도 증가를 위한 전자파 간섭 최소화 연구)

  • Dong-Hoon Kang;Yong Duck Kang
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.25 no.2
    • /
    • pp.52-57
    • /
    • 2024
  • To measure the vortex structures within the turbulent boundary layer, a hot-wire sensor was mounted on a stepper motor controller and moved to the designated measurement points. Near the surface within the flow field, the velocity is relatively slow, making the measurements highly sensitive to electromagnetic interference (EMI) during signal processing. This EMI primarily originates from the power supplies of computers and other electronic equipment. In our experimental setup, EMI was introduced into BNC cables connected to the hot-wire sensor from the powered stepper motor. When power was supplied to the motor controller to move the hot-wire sensor, EMI appeared on the oscilloscope screen. Consequently, unexpected noise was present in the data measured by the hot-wire sensor. To mitigate this and enhance the signal-to-noise ratio (SNR) during measurements, the connecting cables were shielded, and an old computer without EMI shielding was replaced.

WRF Numerical Study on the Convergent Cloud Band and Its Neighbouring Convective Clouds (겨울철 동해상의 대상수렴운과 그 주위의 대류운에 관한 WRF 수치모의 연구)

  • Kim, Yu-Jin;Lee, Jae Gyoo
    • Atmosphere
    • /
    • v.24 no.1
    • /
    • pp.49-68
    • /
    • 2014
  • This study analyzed atmospheric conditions for the convergent cloud band (Cu-Cb line) in developing stage and its neighbouring convections formed over the East Sea on 1 February 2012, by using synoptic, satellites data, and WRF numerical simulation output of high resolution. In both satellite images and the WRF numerical simulation outputs, the Cu-Cb line that stretched out toward northwest-southeast was shown in the East Sea, and cloud lines of the L mode were aligned in accordance with the prevailing surface wind direction. However, those of the T mode were aligned in the direction of NE-SW, which was nearly perpendicular direction to the surface winds. The directions of the wind shear vectors connecting top winds and bottom winds of the moist layers of the L mode and the T mode were identical with those of the cloud lines of L mode and T mode, respectively. From the WRF simulation convection circulations with a convergence in the lower layer of atmosphere and a divergence above 1.5 km ASL (Above Sea Level) were identified in the Cu-Cb line. A series of small sized vortexes (maximum vortex: $320{\times}10^{-5}s^{-1}$) of meso-${\gamma}$-scale formed by convergences was found along the Cu-Cb lines, suggesting that Cu-Cb lines, consisting of numerous convective clouds, were closely associated with a series of the small vortexes. There was an absolute unstable layer (${\partial}{\theta}/{\partial}z$ < 0) between sfc and ~0.3 km ASL, and a stable layer (${\partial}{\theta}/{\partial}z$ > 0) above ~2 km ASL over the Cu-Cb line and cloud zones. Not only convectively unstable layers (${\partial}{\theta}_e/{\partial}z$ < 0) but also neutral layers (${\partial}{\theta}_e/{\partial}z{\approx}=0$) in the lower atmosphere (sfc~1.5 km ASL) were scattered around over the cloud zones. Particularly, for the Cu-Cb line there were convectively unstable layers in the surface layer, and neutral layers (${\partial}{\theta}_e/{\partial}z{\approx}=0$) between 0.2 and ~1.5 km ASL over near the center of the Cu-Cb line, and the neutralization of unstable layers came from the release of convective instability.