• Title/Summary/Keyword: Connected-Component

Search Result 535, Processing Time 0.032 seconds

A Fast and Precise Blob Detection

  • Nguyen, Thanh Binh;Chung, Sun-Tae
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2009.05a
    • /
    • pp.23-29
    • /
    • 2009
  • Blob detection is an essential ingredient process in some computer applications such as intelligent visual surveillance. However, previous blob detection algorithms are still computationally heavy so that supporting real-time multi-channel intelligent visual surveillance in a workstation or even one-channel real-time visual surveillance in a embedded system using them turns out prohibitively difficult. In this paper, we propose a fast and precise blob detection algorithm for visual surveillance. Blob detection in visual surveillance goes through several processing steps: foreground mask extraction, foreground mask correction, and connected component labeling. Foreground mask correction necessary for a precise detection is usually accomplished using morphological operations like opening and closing. Morphological operations are computationally expensive and moreover, they are difficult to run in parallel with connected component labeling routine since they need much different processing from what connected component labeling does. In this paper, we first develop a fast and precise foreground mask correction method utilizing on neighbor pixel checking which is also employed in connected component labeling so that the developed foreground mask correction method can be incorporated into connected component labeling routine. Through experiments, it is verified that our proposed blob detection algorithm based on the foreground mask correction method developed in this paper shows better processing speed and more precise blob detection.

  • PDF

SIZE DISTRIBUTION OF ONE CONNECTED COMPONENT OF ELLIPTIC RANDOM FIELD

  • Alodat, M.T.
    • Journal of the Korean Statistical Society
    • /
    • v.36 no.4
    • /
    • pp.479-488
    • /
    • 2007
  • The elliptic random field is an extension to the Gaussian random field. We proved a theorem which characterizes the elliptic random field. We proposed a heuristic approach to derive an approximation to the distribution of the size of one connected component of its excursion set above a high threshold. We used this approximation to approximate the distribution of the largest cluster size. We used simulation to compare the approximation with the exact distribution.

Parallel Connected Component Labeling Based on the Selective Four Directional Label Search Using CUDA

  • Soh, Young-Sung;Hong, Jung-Woo
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.16 no.3
    • /
    • pp.83-89
    • /
    • 2015
  • Connected component labeling (CCL) is a mandatory step in image segmentation where objects are extracted and uniquely labeled. CCL is a computationally expensive operation and thus is often done in parallel processing framework to reduce execution time. Various parallel CCL methods have been proposed in the literature. Among them are NSZ label equivalence (NSZ-LE) method, modified 8 directional label selection (M8DLS) method, HYBRID1 method, and HYBRID2 method. Soh et al. showed that HYBRID2 outperforms the others and is the best so far. In this paper we propose a new hybrid parallel CCL algorithm termed as HYBRID3 that combines selective four directional label search (S4DLS) with label backtracking (LB). We show that the average percentage speedup of the proposed over M8DLS is around 60% more than that of HYBRID2 over M8DLS for various kinds of images.

An Efficient Extraction of Pulmonary Parenchyma in CT Images using Connected Component Labeling

  • Thapaliya, Kiran;Park, Il-Cheol;Kwon, Goo-Rak
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.6
    • /
    • pp.661-665
    • /
    • 2011
  • This paper presents the method for the extraction of the lungs part from the other parts for the diagnostic of the lungs part. The proposed method is based on the calculation of the connected component and the centroid of the image. Connected Component labeling is used to label the each objects in the binarized image. After the labeling is done, centroid value is calculated for each object. The filing operation is applied which helps to extract the lungs part from the image retaining all the parts of the original lungs image. The whole process is explained in the following steps and experimental results shows it's significant.

The Binarization of Text Regions in Natural Scene Images, based on Stroke Width Estimation (자연 영상에서 획 너비 추정 기반 텍스트 영역 이진화)

  • Zhang, Chengdong;Kim, Jung Hwan;Lee, Guee Sang
    • Smart Media Journal
    • /
    • v.1 no.4
    • /
    • pp.27-34
    • /
    • 2012
  • In this paper, a novel text binarization is presented that can deal with some complex conditions, such as shadows, non-uniform illumination due to highlight or object projection, and messy backgrounds. To locate the target text region, a focus line is assumed to pass through a text region. Next, connected component analysis and stroke width estimation based on location information of the focus line is used to locate the bounding box of the text region, and each box of connected components. A series of classifications are applied to identify whether each CC(Connected component) is text or non-text. Also, a modified K-means clustering method based on an HCL color space is applied to reduce the color dimension. A text binarization procedure based on location of text component and seed color pixel is then used to generate the final result.

  • PDF

PCB Defects Detection using Connected Component Classification (연결 성분 분류를 이용한 PCB 결함 검출)

  • Jung, Min-Chul
    • Journal of the Semiconductor & Display Technology
    • /
    • v.10 no.1
    • /
    • pp.113-118
    • /
    • 2011
  • This paper proposes computer visual inspection algorithms for PCB defects which are found in a manufacturing process. The proposed method can detect open circuit and short circuit on bare PCB without using any reference images. It performs adaptive threshold processing for the ROI (Region of Interest) of a target image, median filtering to remove noises, and then analyzes connected components of the binary image. In this paper, the connected components of circuit pattern are defined as 6 types. The proposed method classifies the connected components of the target image into 6 types, and determines an unclassified component as a defect of the circuit. The analysis of the original target image detects open circuits, while the analysis of the complement image finds short circuits. The machine vision inspection system is implemented using C language in an embedded Linux system for a high-speed real-time image processing. Experiment results show that the proposed algorithms are quite successful.

Character Region Detection in Natural Image Using Edge and Connected Component by Morphological Reconstruction (에지 및 형태학적 재구성에 의한 연결요소를 이용한 자연영상의 문자영역 검출)

  • Gwon, Gyo-Hyeon;Park, Jong-Cheon;Jun, Byoung-Min
    • Journal of Korea Entertainment Industry Association
    • /
    • v.5 no.1
    • /
    • pp.127-133
    • /
    • 2011
  • Characters in natural image are an important information with various context. Previous work of character region detection algorithms is not detect of character region in case of image complexity and the surrounding lighting, similar background to character, so this paper propose an method of character region detection in natural image using edge and connected component by morphological reconstructions. Firstly, we detect edge using Canny-edge detector and connected component with local min/max value by morphological reconstructed-operation in gray-scale image, and labeling each of detected connected component elements. lastly, detected candidate of text regions was merged for generation for one candidate text region, Final text region detected by checking the similarity and adjacency of neighbor of text candidate individual character. As the results of experiments, proposed algorithm improved the correctness of character regions detection using edge and connected components.

A Study on Representative Skyline Using Connected Component Clustering

  • Choi, Jong-Hyeok;Nasridinov, Aziz
    • Journal of Multimedia Information System
    • /
    • v.6 no.1
    • /
    • pp.37-42
    • /
    • 2019
  • Skyline queries are used in a variety of fields to make optimal decisions. However, as the volume of data and the dimension of the data increase, the number of skyline points increases with the amount of time it takes to discover them. Mainly, because the number of skylines is essential in many real-life applications, various studies have been proposed. However, previous researches have used the k-parameter methods such as top-k and k-means to discover representative skyline points (RSPs) from entire skyline point set, resulting in high query response time and reduced representativeness due to k dependency. To solve this problem, we propose a new Connected Component Clustering based Representative Skyline Query (3CRS) that can discover RSP quickly even in high-dimensional data through connected component clustering. 3CRS performs fast discovery and clustering of skylines through hash indexes and connected components and selects RSPs from each cluster. This paper proves the superiority of the proposed method by comparing it with representative skyline queries using k-means and DBSCAN with the real-world dataset.

Recognition of Road Surface Marks and Numbers Using Connected Component Analysis and Size Normalization (연결 성분 분석과 크기 정규화를 이용한 도로 노면 표시와 숫자 인식)

  • Jung, Min Chul
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.1
    • /
    • pp.22-26
    • /
    • 2022
  • This paper proposes a new method for the recognition of road surface marks and numbers. The proposed method designates a region of interest on the road surface without first detecting a lane. The road surface markings are extracted by location and size using a connection component analysis. Distortion due to the perspective effect is minimized by normalizing the size of the road markings. The road surface marking of the connected component is recognized by matching it with the stored road marking templates. The proposed method is implemented using C language in Raspberry Pi 4 system with a camera module for a real-time image processing. The system was fixedly installed in a moving vehicle, and it recorded a video like a vehicle black box. Each frame of the recorded video was extracted, and then the proposed method was tested. The results show that the proposed method is successful for the recognition of road surface marks and numbers.

GPU Based Incremental Connected Component Processing in Dynamic Graphs (동적 그래프에서 GPU 기반의 점진적 연결 요소 처리)

  • Kim, Nam-Young;Choi, Do-Jin;Bok, Kyoung-Soo;Yoo, Jae-Soo
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.6
    • /
    • pp.56-68
    • /
    • 2022
  • Recently, as the demand for real-time processing increases, studies on a dynamic graph that changes over time has been actively done. There is a connected components processing algorithm as one of the algorithms for analyzing dynamic graphs. GPUs are suitable for large-scale graph calculations due to their high memory bandwidth and computational performance. However, when computing the connected components of a dynamic graph using the GPU, frequent data exchange occurs between the CPU and the GPU during real graph processing due to the limited memory of the GPU. The proposed scheme utilizes the Weighted-Quick-Union algorithm to process large-scale graphs on the GPU. It supports fast connected components computation by applying the size to the connected component label. It computes the connected component by determining the parts to be recalculated and minimizing the data to be transmitted to the GPU. In addition, we propose a processing structure in which the GPU and the CPU execute asynchronously to reduce the data transfer time between GPU and CPU. We show the excellence of the proposed scheme through performance evaluation using real dataset.