• 제목/요약/키워드: Conjugate Gradient method

검색결과 218건 처리시간 0.02초

THE STEEPEST DESCENT METHOD AND THE CONJUGATE GRADIENT METHOD FOR SLIGHTLY NON-SYMMETRIC, POSITIVE DEFINITE MATRICES

  • Shin, Dong-Ho;Kim, Do-Hyun;Song, Man-Suk
    • Communications of the Korean Mathematical Society
    • /
    • 제9권2호
    • /
    • pp.439-448
    • /
    • 1994
  • It is known that the steepest descent(SD) method and the conjugate gradient(CG) method [1, 2, 5, 6] converge when these methods are applied to solve linear systems of the form Ax = b, where A is symmetric and positive definite. For some finite difference discretizations of elliptic problems, one gets positive definite matrices that are almost symmetric. Practically, the SD method and the CG method work for these matrices. However, the convergence of these methods is not guaranteed theoretically. The SD method is also called Orthores(1) in iterative method papers. Elman [4] states that the convergence proof for Orthores($\kappa$), with $\kappa$ a positive integer, is not heard. In this paper, we prove that the SD method and the CG method converge when the $\iota$$^2$ matrix norm of the non-symmetric part of a positive definite matrix is less than some value related to the smallest and the largest eigenvalues of the symmetric part of the given matrix.(omitted)

  • PDF

Inverse Problem of Determining Unknown Inlet Temperature Profile in Two Phase Laminar Flow in a Parallel Plate Duct by Using Regularization Method (조정법을 이용한 덕트 내의 이상 층류 유동에 대한 입구 온도분포 역해석)

  • Hong, Yun-Ky;Baek, Seung-Wook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • 제28권9호
    • /
    • pp.1124-1132
    • /
    • 2004
  • The inverse problem of determining unknown inlet temperature in thermally developing, hydrodynamically developed two phase laminar flow in a parallel plate duct is considered. The inlet temperature profile is determined by measuring temperature in the flow field. No prior information is needed for the functional form of the inlet temperature profile. The inverse convection problem is solved by minimizing the objective function with regularization method. The conjugate gradient method as iterative method and the Tikhonov regularization method are employed. The effects of the functional form of inlet temperature, the number of measurement points and the measurement errors are investigated. The accuracy and efficiency of these two methods are compared and discussed.

Classification of the Types of Defects in Steam Generator Tubes using the Quasi-Newton Method

  • Lee, Joon-Pyo;Jo, Nam-H.;Roh, Young-Su
    • Journal of Electrical Engineering and Technology
    • /
    • 제5권4호
    • /
    • pp.666-671
    • /
    • 2010
  • Multi-layer perceptron neural networks have been constructed to classify four types of defects in steam generator tubes. Three features are extracted from the signals of the eddy current testing method. These include maximum impedance, phase angle at the point of maximum impedance, and an angle between the point of maximum impedance and the point of half the maximum impedance. Two hundred sets of these features are used for training and assessing the networks. Two approaches are involved to train the networks and to classify the defect type. One is the conjugate gradient method and the other is the Broydon-Fletcher-Goldfarb-Shanno method which is recognized as the most popular algorithm of quasi-Newton methods. It is found from the computation results that the training time of the Broydon-Fletcher-Goldfarb-Shanno method is much faster than that of the conjugate gradient method in most cases. On the other hand, no significant difference of the classification performance between the two methods is observed.

Optimization Inverse Design Technique for Fluid Machinery Impellers (유체기계 임펠러의 최적 역설계 기법)

  • Kim J. S.;Park W. G.
    • Journal of computational fluids engineering
    • /
    • 제3권1호
    • /
    • pp.37-45
    • /
    • 1998
  • A new and efficient inverse design method based on the numerical optimization technique has been developed. The 2-D incompressible Navier-Stokes equations are solved for obtaining the objective functions and coupled with the optimization procedure to perform the inverse design. The steepest descent and the conjugate gradient method have been applied to find the searching direction. The golden section method was applied to compute the design variable intervals. It has been found that the airfoil and the pump impellers are well converged to their targeting shapes.

  • PDF

Neural network based model for seismic assessment of existing RC buildings

  • Caglar, Naci;Garip, Zehra Sule
    • Computers and Concrete
    • /
    • 제12권2호
    • /
    • pp.229-241
    • /
    • 2013
  • The objective of this study is to reveal the sufficiency of neural networks (NN) as a securer, quicker, more robust and reliable method to be used in seismic assessment of existing reinforced concrete buildings. The NN based approach is applied as an alternative method to determine the seismic performance of each existing RC buildings, in terms of damage level. In the application of the NN, a multilayer perceptron (MLP) with a back-propagation (BP) algorithm is employed using a scaled conjugate gradient. NN based model wasd eveloped, trained and tested through a based MATLAB program. The database of this model was developed by using a statistical procedure called P25 method. The NN based model was also proved by verification set constituting of real existing RC buildings exposed to 2003 Bingol earthquake. It is demonstrated that the NN based approach is highly successful and can be used as an alternative method to determine the seismic performance of each existing RC buildings.

Comparison of Regularization Techniques for an Inverse Radiation Boundary Analysis (역복사경계해석을 위한 다양한 조정법 비교)

  • Kim, Ki-Wan;Shin, Byeong-Seon;Kil, Jeong-Ki;Yeo, Gwon-Koo;Baek, Seung-Wook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • 제29권8호
    • /
    • pp.903-910
    • /
    • 2005
  • Inverse radiation problems are solved for estimating the boundary conditions such as temperature distribution and wall emissivity in axisymmetric absorbing, emitting and scattering medium, given the measured incident radiative heat fluxes. Various regularization methods, such as hybrid genetic algorithm, conjugate-gradient method and finite-difference Newton method, were adopted to solve the inverse problem, while discussing their features in terms of estimation accuracy and computational efficiency. Additionally, we propose a new combined approach that adopts the hybrid genetic algorithm as an initial value selector and uses the finite-difference Newton method as an optimization procedure.

Architectural Analysis of Type-2 Interval pRBF Neural Networks Using Space Search Evolutionary Algorithm (공간탐색 진화알고리즘을 이용한 Interval Type-2 pRBF 뉴럴 네트워크의 구조적 해석)

  • Oh, Sung-Kwun;Kim, Wook-Dong;Park, Ho-Sung;Lee, Young-Il
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • 제21권1호
    • /
    • pp.12-18
    • /
    • 2011
  • In this paper, we proposed Interval Type-2 polynomial Radial Basis Function Neural Networks. In the receptive filed of hidden layer, Interval Type-2 fuzzy set is used. The characteristic of Interval Type-2 fuzzy set has Footprint Of Uncertainly(FOU), which denotes a certain level of robustness in the presence of un-known information when compared with the type-1 fuzzy set. In order to improve the performance of proposed model, we used the linear polynomial function as connection weight of network. The parameters such as center values of receptive field, constant deviation, and connection weight between hidden layer and output layer are optimized by Conjugate Gradient Method(CGM) and Space Search Evolutionary Algorithm(SSEA). The proposed model is applied to gas furnace dataset and its result are compared with those reported in the previous studies.

AN OPTIMAL BOOSTING ALGORITHM BASED ON NONLINEAR CONJUGATE GRADIENT METHOD

  • CHOI, JOOYEON;JEONG, BORA;PARK, YESOM;SEO, JIWON;MIN, CHOHONG
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제22권1호
    • /
    • pp.1-13
    • /
    • 2018
  • Boosting, one of the most successful algorithms for supervised learning, searches the most accurate weighted sum of weak classifiers. The search corresponds to a convex programming with non-negativity and affine constraint. In this article, we propose a novel Conjugate Gradient algorithm with the Modified Polak-Ribiera-Polyak conjugate direction. The convergence of the algorithm is proved and we report its successful applications to boosting.

Inverse Problem Methodology for Parameter Identification of a Separately Excited DC Motor

  • Hadef, Mounir;Mekideche, Mohamed Rachid
    • Journal of Electrical Engineering and Technology
    • /
    • 제4권3호
    • /
    • pp.365-369
    • /
    • 2009
  • Identification is considered to be among the main applications of inverse theory and its objective for a given physical system is to use data which is easily observable, to infer some of the geometric parameters which are not directly observable. In this paper, a parameter identification method using inverse problem methodology is proposed. The minimisation of the objective function with respect to the desired vector of design parameters is the most important procedure in solving the inverse problem. The conjugate gradient method is used to determine the unknown parameters, and Tikhonov's regularization method is then used to replace the original ill-posed problem with a well-posed problem. The simulation and experimental results are presented and compared.