• Title/Summary/Keyword: Conidia formation

Search Result 112, Processing Time 0.026 seconds

Effects of Light on Reproduction of Gibberella zeae and Overwintering of Soil-Borne Conidia (밀붉은곰팡이병균의 분생포자 및 자낭각 형성에 미치는 광선의 영향 및 토양에서의 분생포자월동)

  • Kim Hee Kyu;Chung Hoo Sup
    • Korean journal of applied entomology
    • /
    • v.11 no.1
    • /
    • pp.31-35
    • /
    • 1972
  • 1. Continuous light induced more conidia than alternating light and darkness treatment in isolate Chinju 1. Isolate Suwon 3 produced much more conidia on synthetic medium than Chinju 1 in light. Conidial formation in Suwon 3 increased remarkably with alternate light and darkness in 8 days incubation. 2. Light was essential for perithecial formation in Chinju 1. No matured perithecia were observed in Suwon 3 with any treatment. Abundant perithecia were produced in Chinju 1 but only perithecial initiation occurred in Suwon 3. Suwon 3 produced significantly more conidia than Chinju 1, while perithecial formation was reversed. 3. Conidial numbers in soil decreased significantly through the winter at 10, 30 and 50 per cent soil moisture, with the most striking decrease at 10 per cent levels, but the number recovered again beginning in March, regardless of the soil moisture. The above results provide us a useful clue to support the possbility the conidia may serve as a primary inoculum.

  • PDF

Physiological and Morphological Aspects of Bipolaris sorokiniana Conidia Surviving on Wheat Straw

  • Duveiller, E.;Chand, R.;Singh, H.V.;Joshi, A.K.
    • The Plant Pathology Journal
    • /
    • v.18 no.6
    • /
    • pp.328-332
    • /
    • 2002
  • Wheat samples showing typical spot blotch symptoms on stems and sheaths were collected from the field after physiological maturity, and were sealed in paper bags and stored in the laboratory at room temperature to study the survival of Bipolaris sorokiniana conidia on wheat straw. The materials were observed at monthly intervals to assess the conidia viability during storage. After 4 months, the frequency of individual conidia already present on wheat straw at the time of sampling was reduced and appeared to be progressively replaced by the formation of round structures consist-ing of conidia aggregates. After 5 months, distinct, individual conidia were no longer detected, and only 'clumps of conidia' were observed. These dark black aggregates or 'clumps of conidia’measured 157-170$\mu\textrm{m}$ in diameter and were grouped into boat-shaped olivacious conidia showing thick wall and measuring 50-82$\times$20-30$\mu\textrm{m}$. The germination was unipolar and below 0.5%, suggesting the occurrence of dormancy, In contrast, individual conidium produced on wheat during the growing season were 96-130$\times$16-20$\mu\textrm{m}$, slightly curved, hyaline to light pale, and euseptate with a bipolar germination reaching 98-100%. Bipolaris sorokiniana conidia produced on PDA were 55-82$\times$20-27$\mu\textrm{m}$, tapered at both ends, dark brown to olivacious, distoseptate, showed up to 1% germination, and were predominantly unipolar. Results of the present study suggest that B. sorokiniana conidia belonged to two different physiological categories corresponding to the pathogen's infection phase and its survival, respectively. The infection phase is characterized by a high germination percentage as opposed to the survival phase harboring apparent dormancy.

Morphological Characteristics of Conidiogenesis in Cordyceps militaris

  • Shrestha, Bhushan;Han, Sang-Kuk;Yoon, Kwon-Sang;Sung, Jae-Mo
    • Mycobiology
    • /
    • v.33 no.2
    • /
    • pp.69-76
    • /
    • 2005
  • Conidial development of Cordyceps militaris was observed from germinating ascospores and vegetative hyphae through light and scanning electron microscopy (SEM). Ascospores were discharged from fresh specimens of C. militaris in sterile water as well as Sabouraud Dextrose agar plus Yeast Extract (SDAY) plates. We observed ascospore germination and conidial formation periodically. Under submerged condition in sterile water, most part-spores germinated unidirectionally and conidia were developed directly from the tips of germinating hyphae of part-spores within 36 h after ascospore discharge, showing microcyclic conidiation. First-formed conidia were cylindrical or clavate followed by globose and ellipsoidal ones. Germination of ascospores and conidial development were observed on SDAY agar by SEM. Slimy heads of conidia on variously arranged phialides, from solitary to whorl, developed 5 days after ascospore discharge. Besides, two distinct types of conidia, elongated pyriform or cylindrical and globose, were observed in the same slimy heads by SEM. Conidia were shown to be uninucleate with 4,6-diamidino-2-phenylindole staining. Conidiogenous cells were more slender than vegetative hyphae, having attenuated tips. Microcyclic conidiation, undifferentiated conidiogenous hyphae (phialides), polymorphic conidia and solitary, opposite to whorled type of phialidic arrangement are reported here as the characteristic features of asexual stage of C. militaris, which can be distinguished from other Cordyceps species.

Production and Exudation of Botryosphaeria dothidea conidia Using Cucumber Disks and Cereal Media (오이 절편과 배지를 이용한 Botryosphaeria dothidea 분생포자의 생성과 분출)

  • 김기우;박은우
    • Korean Journal Plant Pathology
    • /
    • v.14 no.1
    • /
    • pp.46-51
    • /
    • 1998
  • A method for inoculum production of Botryosphaerisa dothidea was developed using cucumber disks and cereal media. Disks of cucumber fruits, and cereal media of barley, wheat, and rice seeds were inoculated with mycelial plugs of B. dothidea and incubated at 27$^{\circ}C$. Pycnidia were produced on the surface of cucumber disks and seeds after 5 days of inoculation. When the inoculated barley seeds were immersed in sterilized distilled water for 5 minutes, abundant conidia of B. dothidea were exuded from mature pycnidia. Conidia were held together by mucilage as they were released from an ostiole. Compared with the conventional method for inoculum preparation using agar media, such as potato-dextrose agar and oatmeal agar, this method could minimize the tedious work required for inoculum preparation within a shorter period of time.

  • PDF

Mass Sporulating Method for Conidial Formation of Mycosphaerella nawae Causing the Spotted Leaf Casting of Persimmon (감나무 둥근무늬낙엽병균(Mycosphaerella nawae)의 분생포자 대량 형성법)

  • Kwon, Jin-Hyeuk;Kang, Soo-Woong;Kim, Dong-Kil;Park, Chang-Senk;Kim, Hee-Kyu
    • Korean Journal Plant Pathology
    • /
    • v.13 no.4
    • /
    • pp.255-256
    • /
    • 1997
  • The mass sporulating method for conidia of Mycosphaerella nawac the causal organism of the spotted leaf casting of persimmon was investigated in this experiment. The conidia of M. nawae were sporulated on artificial media after prolonged period of incubation. The maximum amount of conidia of $39.0{\times}10^4/ml$ was harvested from 90-day old culture on PDA at $25^{\circ}C.$

  • PDF

Potential Appilication of Epicoccosorus nematosporus for the Control of Water chestnut (올방개 지문무늬병균의 효과적 처리방법에 의한 올방개 제초효과)

  • Hong, Yeon-Kyu;Cho, Jae-Min;Uhm, Jae-Youl;Ryu, Kil-Rim;,
    • Korean Journal Plant Pathology
    • /
    • v.13 no.3
    • /
    • pp.167-171
    • /
    • 1997
  • To find optimum application methods of Epicoccosorus nematosporus for control of water chestnut, five different concentration of conidial suspensions ($10^[3}$ conidia/ml to $10^[7}$ conidia/ml) fo the fungus were applied 1 to 4 times on 10~40 days old seedlings of water chestnut in greenhouse. Inoculum levels equal to or greater than $10^[5}$ conidia/ml killed significantly more shoots (82.6%~92.1%) and suppressed significantly underground tuber formation compared to inoculum concentration less than $10^[4}$ conidia/ml. When the conidial suspension of ($6.3 {\times} 10^{5}$conidia/ml of E. nematosporus was sprayed 2 times in 7 days interval, percentage of the killed plants was up to 98.7%. Numbers of reshoots and tubers were alsosuppressed significantly compared to one time application. The percents of killed shoots were similar between 10-day-old and 20-day-old seedlings, and significantly higher than those treated on 30- or 40-day-old seedlings. The fungus treated on 20-day-old seedlings was the most effective because there was high number of reshoots from 10-day-old seedlings. Therefore, optimal application conditions for E. nematosporus is 2~3 times of application in 7 days interval with $10^[5}$ conidia/ml on 20-day-old seedling age.

  • PDF

Biosynthesis of messenger RNA in aspergillus phoenicis during thier life cycle (Aspergillus phoenicis의 생활사를 통한 mRNA의 생합성)

  • 김봉수;이영록
    • Korean Journal of Microbiology
    • /
    • v.26 no.1
    • /
    • pp.27-31
    • /
    • 1988
  • Biosynthesis and processing of cytoplasmic mRNA from heterogenous nuclear RNA (hn-RNA) in Aspergillus phoenicis were studied by $^{3}H$-uridine labeling and synchronous culture techniques during their life cycle. Incorporations of $^{3}H$-uridine into hn-RNA and mRNA were most rapid in vesicle-phialide fromation stage and diminished in hyphal growth stage. The processing of cytoplasmic mRNA from hn-RNA was proceeded more rapidly in hyphal growth and conidiophore formation stages than in conidia and vesicle-phialide formation stages. The specific radioactivities of hn-RNA and mRNA were very high in vesicle-phialide formation stage.

  • PDF

Genetic Control of Asexual Sporulation in Fusarium graminearum

  • Son, Hokyoung;Kim, Myung-Gu;Chae, Suhn-Kee;Lee, Yin-Won
    • 한국균학회소식:학술대회논문집
    • /
    • 2014.10a
    • /
    • pp.15-15
    • /
    • 2014
  • Fusarium graminearum (teleomorph Gibberella zeae) is an important plant pathogen that causes head blight of major cereal crops such as wheat, barley, and rice, as well as causing ear and stalk rot on maize worldwide. Plant diseases caused by this fungus lead to severe yield losses and accumulation of harmful mycotoxins in infected cereals [1]. Fungi utilize spore production as a mean to rapidly avoid unfavorable environmental conditions and to amplify their population. Spores are produced sexually and asexually and their production is precisely controlled. Upstream developmental activators consist of fluffy genes have been known to orchestrate early induction of condiogenesis in a model filamentous fungus Aspergillus nidulans. To understand the molecular mechanisms underlying conidiogenesis in F. graminearum, we characterized functions of the F. graminearum fluffy gene homologs [2]. We found that FlbD is conserved regulatory function for conidiogenesis in both A. nidulans and F. graminearum among five fluffy gene homologs. flbD deletion abolished conidia and perithecia production, suggesting that FlbD have global roles in hyphal differentiation processes in F. graminearum. We further identified and functionally characterized the ortholog of AbaA, which is involved in differentiation from vegetative hyphae to conidia and known to be absent in F. graminearum [3]. Deletion of abaA did not affect vegetative growth, sexual development, or virulence, but conidium production was completely abolished and thin hyphae grew from abnormally shaped phialides in abaA deletion mutants. Overexpression of abaA resulted in pleiotropic defects such as impaired sexual and asexual development, retarded conidium germination, and reduced trichothecene production. AbaA localized to the nuclei of phialides and terminal cells of mature conidia. Successful interspecies complementation using A. nidulans AbaA and the conserved AbaA-WetA pathway demonstrated that the molecular mechanisms responsible for AbaA activity are conserved in F. graminearum as they are in A. nidulans. F. graminearum ortholog of Aspergillus nidulans wetA has been shown to be involved in conidiogenesis and conidium maturation [4]. Deletion of F. graminearum wetA did not alter mycelial growth, sexual development, or virulence, but the wetA deletion mutants produced longer conidia with fewer septa, and the conidia were sensitive to acute stresses, such as oxidative stress and heat stress. Furthermore, the survival rate of aged conidia from the F. graminearum wetA deletion mutants was reduced. The wetA deletion resulted in vigorous generation of single-celled conidia through autophagy-dependent microcycle conidiation, indicating that WetA functions to maintain conidia dormancy by suppressing microcycle conidiation in F. graminearum. In A. nidulans, FlbB physically interacts with FlbD and FlbE, and the resulting FlbB/FlbE and FlbB/FlbD complexes induce the expression of flbD and brlA, respectively. BrlA is an activator of the AbaA-WetA pathway. AbaA and WetA are required for phialide formation and conidia maturation, respectively [5]. In F. graminearum, the AbaA-WetA pathway is similar to that of A. nidulans, except a brlA ortholog does not exist. Amongst the fluffy genes, only fgflbD has a conserved role for regulation of the AbaA-WetA pathway.

  • PDF

Microscopic Observation of the Pseudothecial Development of Mycosphaerella nawae on Persimmon Leaves Infected by Ascospore and Conidia (감나무 둥근무늬낙엽병균 Mycosphaerella nawae의 자낭포자 및 분생포자에 감염된 이병엽 상에서 위자낭각 형성과정 관찰)

  • 권진혁;강수웅;박창석;김희규
    • Korean Journal Plant Pathology
    • /
    • v.14 no.5
    • /
    • pp.408-412
    • /
    • 1998
  • In order to illustrate the role of conidia of Mycosphaerella nawae as a secondary inoculum in nature, pseudothecial development on persimmon leaves was investigated microscopically. The fungal ascospores have been believed as the primary or only inoculum source in nature, however, pseudothecia were readily formed on persimmon leaves infected naturally and artificially by conidia. The pseudothecia of M. nawae were found to form in the tissues of infected leaves while the leaves were still hanging on the trees. The size of pseudothecia were approximately 51.0~122.4$\times$51.0~112.2 ${\mu}{\textrm}{m}$ (82.8 $\times$72.5 ${\mu}{\textrm}{m}$in average), the shapes were spherical, ovoid or occidental pear type. The sizes of asci were approximately 30.6~61.2$\times$8.2~10.2 ${\mu}{\textrm}{m}$(46.6$\times$9.4 ${\mu}{\textrm}{m}$ in average) and the shapes were cylinder or banana. The ascospores were mostly spindle type, and the sizes were 10.2~12.2$\times$3.1~4.1 ${\mu}{\textrm}{m}$ (11.4$\times$3.2 ${\mu}{\textrm}{m}$ in average)-like. The pseudothecial formation was initiated before defoliation and morphological characteristics of the pseudothecia, ascus and ascospores on the infected leaves were fully illustrated in this study. Results indicated that conidia of M. nawae induce circular leaf spot of persimmon as much as ascospores, and might play an important role of the disease epidemics in nature.

  • PDF

An Infection Model of Apple White Rot Based on Conidial Germination and Appressorium Formation of Botryosphaeria dothidea

  • Kim, Ki-Woo;Kim, Kyu-Rang;Park, Eun-Woo
    • The Plant Pathology Journal
    • /
    • v.21 no.4
    • /
    • pp.322-327
    • /
    • 2005
  • Regression models for determining infection periods of apple white rot were developed based on conidial germination and appressorium formation of Botryosphaeria dothidea. A total of 120 apple fruits were inoculated with the fungal conidial suspension and subjected to 6 temperatures and 10 wetness periods. Conidia germinated and produced appressoria, exhibiting swollen tips of germ tubes on the fruit surface. Conidial germination (G) increased with temperature (T) and wetness period (W), and was described as $G=-89.273+7.649T+7.056W-0.109T^{2}-0.085W^{2}-0.066TW(R^{2}=0.75)$. Less than 2 hr of wetness period were enough for conidia to germinate at 25 to $30^{\circ}C$. Effects of temperature and wetness period on appressorium formation (A) could be explained as $A=-1.540-2.375W+0.045W^{2}+0.213TW(R^{2}=0.77)$. The relationship between conidial germination and appressorium formation ($A_g$) was described as$A_g=0.381-0.227G+0.005G^{2}(R^{2}=0.67)$, suggesting that conidial germination may have to reach approximately $43.7\%$ to initiate appressorium formation. Using the regression equation for conidial germination and the criterion of $43.7\%$ conidial germination, an infection model was developed to determine infection periods based on temperature and wetness period. The infection model with the criterion of $43.7\%$ conidial germination was apparently more conservative than the appressorium formation model in determining possibility of apple infection. The infection model seemed sensitive to variable weather conditions, suggesting possible use of the model for timing fungicide sprays to control white rot of apples in practice.