• Title/Summary/Keyword: Conical shape

Search Result 207, Processing Time 0.025 seconds

Design of the Brake Device Using the Axial Crushing of Truncated Cone Type Cylinder

  • Kim, Ji-Chul;Shim, Woo-Jeon
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.387-388
    • /
    • 2002
  • A Brake device for the high-speed impacting object is designed using an axial crushing of thin-walled metal cylinder, Thickness of the cylinder is increased smoothly from the impacting end to the fixed end, resulting in the truncated cone shape. Truncated cone shape ensures that plastic hinges are formed sequentially from impacting end. This increases the reliability of brake device working. Computational and real experiments were performed to verify the effects of conical angle. Results indicate that undesirable sudden rise of crushing load can be prevented by applying appropriate conical angle.

  • PDF

Experimental Study of Emissivity with the Variation of Temperature and Shape Factor Using the Radiation Apparatus (복사 장치를 이용한 온도와 형상계수의 변화에 따른 방사율에 관한 실험적 연구)

  • Kim, Chung-Rae;Jeong, Byung-Cheol;Kang, Hyung-Suk
    • Journal of Industrial Technology
    • /
    • v.25 no.B
    • /
    • pp.135-140
    • /
    • 2005
  • Voltage of radiometer is measured experimentally using the radiation apparatus in each case of iron- and copper-plates as specimen heating device. The length between radiometer and conical shield and the temperature of specimen heating device are considered as variables. The length between radiometer and conical shield controls the amount of radiation from the specimen heating device. Emissivity for both iron-and copper-plates are calculated by using Stefan-Boltzmann equation. One of results shows that emissivity for both materials increases as the length between radiometer and conical shield increases.

  • PDF

Experimental Study on Validation of Nose Shape Factors of Projectile in Existing Impact formulas for High-Strength Concrete (고강도콘크리트에 대한 기존 내충격 성능평가식의 비상체 선단형상계수 유효성 평가 실험 연구)

  • Kim, Sang-Hee;Kang, Thomas H.K.;Hong, Sung-Gul
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.2
    • /
    • pp.13-20
    • /
    • 2019
  • This study was conducted in order to validate the nose shape factors of projectile in existing impact formulas for high-strength concrete in the event of collision with high-speed projectiles. In order to conduct the high-speed impact experiment, specified concrete strengths of 35, 100, and 120 MPa were prepared and tested in collision with both conical and hemispherical projectiles. The results showed that the measured penetration depth did not decrease linearly as concrete strength increased. Comparing the ratio penetration depth to the kinetic energy of the conical and hemispherical projectiles, the difference in the ratios for high strength concrete was observed to decline as concrete strength increased. However, in the modified NDRC and the Hughes formulas, the difference in the predicted penetration depth of the conical and hemispherical projectiles was constant despite increasing concrete strength. The modified NDRC and Hughes formulas should be improved upon so as to be applied to high strength concrete.

Study on the Total Design of a Conical Involute Gear (코니칼 인볼류트 기어의 Total 설계에 관한 연구)

  • Kim, Jun-Seong;Lee, Do-Young;Kang, Jai-Hwa;Xu, Zhe-Zhu;Lyu, Sung-Ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.2
    • /
    • pp.100-107
    • /
    • 2014
  • Currently, there are many power transmission devices, including gears, friction wheels, chains, and belts. Because the power transmission of gears is most certainin these devices, gears are widely used in different power transmission fields and environments. In accordance with the gear shape, gears can be classified as cylindrical gears and conical gears. A cylindrical gear, which provides a means of power transmission under parallel axis and skewed axis conditions, contains a spur gear, a helical gear and a worm gear. A conical gear, which can be used on a skewed axis as well as parallel and crossed axes, includes a bevel gear(e.g., straight bevel, spiral bevel, hypoid gear) and a conical involute gear(or a bevel oid gear). In this paper, a conical involute gear which utilizes the fabrication method of other involute gears such as spur and helical gears using a CNC hobbing machine is discussed.

3-D characteristics of conical vortex around large-span flat roof by PIV technique

  • Sun, Huyue;Ye, Jihong
    • Wind and Structures
    • /
    • v.22 no.6
    • /
    • pp.663-684
    • /
    • 2016
  • Conical vortices generated at the corner regions of large-span flat roofs have been investigated by using the Particle Image Velocimetry (PIV) technique. Mean and instantaneous vector fields for velocity, vorticity, and streamlines were measured at three visual planes and for two different flow angles of $15^{\circ}$. The results indicated that conical vortices occur when the wind is not perpendicular to the front edge. The location of the leading edge corresponding to the negative peak vorticity and maximum turbulent kinetic energy was found at the center of the conical vortex. The wind pressure reaches the maximum near the leading edge roof corner, and a triangle of severe suctions zone appears downstream. The mean pressure in uniform flow is greater than that under turbulent flow condition, while a significant increase in the fluctuating wind pressure occurs in turbulent streams. From its emergence to stability, the shape of the vortex cross-section is nearly elliptical, with increasing area. The angle that forms between the vortex axis and the leading edge is much smaller in turbulent streams. The detailed flow structures and characteristics obtained through FLUENT simulation are in agreement with the experimental results. The three dimensional (3-D) structure of the conical vortices is clearly observed from the comprehensive arrangement of several visual planes, and the inner link was established between the vortex evolution process, vortex core position and pressure distribution.

Effects of imperfection shapes on buckling of conical shells under compression

  • Shakouri, Meisam;Spagnoli, Andrea;Kouchakzadeh, M.A.
    • Structural Engineering and Mechanics
    • /
    • v.60 no.3
    • /
    • pp.365-386
    • /
    • 2016
  • This paper describes a systematic numerical investigation into the nonlinear elastic behavior of conical shells, with various types of initial imperfections, subject to a uniformly distributed axial compression. Three different patterns of imperfections, including first axisymmetric linear bifurcation mode, first non-axisymmetric linear bifurcation mode, and weld depression are studied using geometrically nonlinear finite element analysis. Effects of each imperfection shape and tapering angle on imperfection sensitivity curves are investigated and the lower bound curve is determined. Finally, an empirical lower bound relation is proposed for hand calculation in the buckling design of conical shells.

Preliminary Design for Axisymmetric Supersonic Inlet using Conical Flow Solution and Optimization Technique (원추 유동 해와 최적화 기법을 이용한 축대칭 초음속 흡입구의 예비 설계)

  • 정석영
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.9
    • /
    • pp.11-19
    • /
    • 2006
  • Design program was developed to determine the external shape of the supersonic axisymmetric inlet by combining conical flow solver and approximation technique of conical shock with gradient-based optimization algorithm. Inlet designs were carried out under various operation conditions through optimization with respectively two object functions which consist of pressure recovery and cowl drag and with constraints about shock position, cowl shape, and minimum throat area. New object function consisting of pressure recovery and drag of the external cowl was proposed and the optimized shapes from new object function were compared to the ones from the old object function which maximize only the pressure recovery. Through computations of inviscid and turbulent flow, was tested performance of the design program and performance estimated in design program agreed well with computation results for inlets designed under various flight conditions.

Numerical Analysis for the Pressure and Flow Fields past a Two-Staged Conical Orifice (이단 원추형 오리피스를 지나는 압력장과 유동장에 관한 수치적 연구)

  • Kim, Yeon-Su;Kim, Yu-Gon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.2
    • /
    • pp.278-287
    • /
    • 2002
  • The objective of the paper was to calculate the pressure drop and to investigate the recirculation region of the conical orifices used in Kwang-yang Iron & Steel Company. The flow field with water used as a working fluid was the turbulent flow for Reynolds number of 2$\times$10$^4$. The effective parameters fur the pressure drop and the recirculation region were the conical orifice\`s inclined angle ($\theta$) against the wall, the interval(S) between orifices, the relative angle of rotation($\alpha$) of the orifices, the shape of the orifice's hole(circle, rectangle, triangle) having the same area, the number(N) of the orifice's holes having the same mass flow rate, and the thickness(t) of the orifices. It was fecund that the shape of the orifice's hole, the number of the orifice's holes and the thickness of the orifice affected the total pressure drop a lot and that the conical orifice's inclined angle against the wall, the relative angle of rotation of the orifices, the number of the orifice's holes and the thickness of the orifices affected the center location of the recirculation region. The PISO algorithm with FLUENT code was employed to analyze the flow field.

Taxonomic study on the achene morphology of Korean Aster L. and its allied taxa (한국산 개미취속 및 근연 분류군의 열매 형태에 관한 분류학적 연구)

  • 정규영;정형진
    • Korean Journal of Plant Resources
    • /
    • v.13 no.3
    • /
    • pp.179-187
    • /
    • 2000
  • The achene morphology about 16 taxa of Korean Aster L. sensu lato were investigated to estimate its taxonomic values. The achene shapes were divided into four types; oblanceolate-oblong, obovate, oblong and obovate-oblong. The trichome shape on achene six types; uniseriate-conical, filiform, cylindrical, capitate type, long stalk capitate and globular. Their distributional features on upper part of achene four types; absent, sparse distribution of conical trichome, dense distribution of conical trichome and mixed distribution of conical and capitate trichome. The achene shapes and trichome characteristics were regarded to be a good characters in delimiting taxa because these did not differ among individuals in same taxa, but differ among the taxa. If Korean Aster L. sensu late were divided into Kalimeris, Heteropappus, Aster, Cymnaster, the capitate forms and mixed distribution of conical and capitate trichome were recognized as the good characters in delimting above section such as genus Kalimeris and Heteropappus, section Pseudocalimeris of Aster L. sensu stricto.

  • PDF

A PARAMETRIC STUDY OF CONICAL FRUSTUM GEOMETRY FOR IMPROVEMENT OF COOLING PERFORMANCE OF VORTEX TUBE (Vortex Tube 성능 개선을 위한 절두체의 형상 매개변수에 대한 연구)

  • Koo, H.B.;Park, J.Y.;Sohn, D.Y.;Choi, Y.H.
    • Journal of computational fluids engineering
    • /
    • v.20 no.4
    • /
    • pp.7-13
    • /
    • 2015
  • Vortex tube is a thermal static device that separates compressed air into hot and cold streams. In general, the cooling efficiency of vortex tubes is lower than that of traditional air conditioning equipment and vortex tubes are mainly used for industrial spot cooling applications because of their quick responses. In this study, conical frustums are employed in the nozzle chamber to improve the cooling performance. Conical frustums can be used to decrease the ineffective mass fraction that directly passes through the cold exit without energy separation. The shape optimization of conical frustums has been performed using full factorial design. It is found that the height of frustums has the largest main effects on the cooling performance. Computational results show that the cooling performance can be increased by about 10% within the considered range of the design parameters. This is because the ineffective mass fraction toward the cold exit is decreased by about 20%.