• Title/Summary/Keyword: Conical pipe

Search Result 13, Processing Time 0.025 seconds

A Simulation for the Characteristics of the Sound-Pipe of King Song-Dok Bell (시뮬레이션에 의한 성덕대왕 신종 음관의 특성)

  • Choi Myung-Jin;Park Hong-Eul
    • Journal of the Korea Society for Simulation
    • /
    • v.14 no.4
    • /
    • pp.69-76
    • /
    • 2005
  • To investigate the characteristics of the sound-pipe on the top of King Song-Dok bell, using computer simulation, the throat impedance was evaluated for the straight pipe and conical pipes with varying taper angles. When sound propagates in a rigid walled, unflanged circular pipe with wavelength larger than radius, the acoustic motion is planar, much as in a bar. The incident sound waves are reflected at the end of pipe and some of them are transmitted. The reflection coefficient and radiation impedance of the sound-pipe of King Song-Dok bell were calculated, and the results demonstrated that the high frequency sound is radiated through the sound-pipe. It behaves like a frequency filter.

  • PDF

Computational mathematical modeling of the nonlinear vibration characteristics of AFG truncated conical nano pipe based on the nonlocal strain gradient theory

  • Zhang, Ruihua;Cao, Yiqing
    • Steel and Composite Structures
    • /
    • v.42 no.5
    • /
    • pp.599-615
    • /
    • 2022
  • In the present paper, the numerical dynamic analysis of a functionally graded nano-scale nonuniform tube was investigated according to the high-order beam theory coupled with the nonlocal gradient strain theory. The supposed cross-section is changed along the pipe length, and the material distribution, which combines both metal and ceramics, is smoothly changed in the pipe length direction, which is called axially functionally graded (AFG) pipe. Moreover, the porosity voids are dispersed in the cross-section and the radial pattern that the existence of both material distribution along the tube length and porosity voids make a two-dimensional functionally graded (2D-FG) truncated conical pipe. On the basis of the Hamilton principle, the governing equations and the associated boundary conditions equations are derived, and then a numerical approach is applied to solve the obtained equations.

Experimental study on the discharge coefficients and cavitation of conical orifices (원추형 오리피스의 유출계수와 캐비테이션에 관한 실험적 연구)

  • Kim, Byeong-Chan;Yun, Byeong-Ok;Park, Bok-Chun;Jo, Nam-O;Ji, Dae-seong;Jeong, Baek-Sun;Park, Gyeong-Am
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.10
    • /
    • pp.1371-1379
    • /
    • 1997
  • The high pressure drop is frequently required in the by-pass line of the pump or of the heat exchanger in power plants. However, cavitation produced by a high pressure drop could damage the pipe and pump blades. Conical orifices are adopted to reduce cavitation due to high pressure drop. The discharge coefficients of conical orifice plates were measured by weighing method in the standard water flow system. The discharge coefficients were larger when the ratios of thickness of orifice edge to throat diameter were larger. The noise generated from a conical orifice due to cavitation was measured with a sound level meter and a hydrophone. With increasing the bore diameter of the orifice, the sound pressure level or the noise level due to cavitation became higher. The noise level was suddenly increased at the inception of cavitation.

The Effect of Insertion Loss on the Element of Exhaust Muffler (배기 소음기 구조가 삽입손실에 미치는 영향)

  • 강동림;김영호;전현부기;김의간
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.5
    • /
    • pp.42-51
    • /
    • 2000
  • The performances of the simple expansion, perforated tube, and conical-connector type as an exhaust muffler are shown in this study. Applying a model in which the method of four-pole parameter is used makes theoretical estimation of the insertion loss. Experiment is performed for the measurement of the insertion loss under four cases according to the variation of the tail pipe length. By comparing the theoretical prediction with the experimental results, the validity of the modeling using the method of four-pole parameter is verified. The personal computer simulation programs for the above mentioned theory on the muffler design have been developed and exhaust sound level measurements have been carried out for simple expansion muffler, conical-connector muffler, perforated tube mufflers and the combined type of conical-connector and simple expansion muffler. The measured results for attenuation characteristics of noise for each muffler are compared with the computed theoretical results to verity the confidence and applicable limits of the theoretical equation derived.

  • PDF

Experimental Study and Numerical Simulation of Cavity Oscillation in a Conical Diffuser

  • Chen, Chang-Kun;Nicolet, Christophe;Yonezawa, Koichi;Farhat, Mohamed;Avellan, Francois;Miyazawa, Kazuyoshi;Tsujimoto, Yoshinobu
    • International Journal of Fluid Machinery and Systems
    • /
    • v.3 no.1
    • /
    • pp.91-101
    • /
    • 2010
  • Based on the one-dimensional stability analysis, the self-excited oscillation in hydraulic power generating systems was studied by a simple experiment and numerical simulation. It was shown that a cavity in a conical diffuser can cause surge. With the diffuser, a high amplitude and low frequency oscillation occurs at low cavitation number. This oscillation was not observed with the straight pipe. It was confirmed that the diffuser effect of the draft tube can be the cause of the full load surge in hydraulic power system. Numerical results were also analyzed to check the validity of the one-dimensional stability analysis.

A Study on the Forming Process Development off Long-neck Flange Using a Long Pipe (긴 관을 이용한 롱넥플랜지 성형공정 개발에 관한 연구)

  • 최간대;강우진;배원병;조종래
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.699-704
    • /
    • 2002
  • The pipe with a long-neck flange is widely used in power plants, chemical plants, and shipbuilding companies. New the pipe with a long-neck flange is manufactured by welding a thick flange to a pipe. But this long-neck flange pipe has some deflects in the welding region such as unfitting and local thermal fatigue, which weaken the strength around the neck of the flange. Moreover, after welding the flange, the contacting surfaces of the flange have to be machined flat. So, that is uneconomical. Therefore, to solve the above problems of the long-neck flange pipe, a new process, which has no defects around the flange neck, is required. In this study, three forming processes are suggested to get an enhanced long-neck flange. First suggested process consists of conical terming and flange forming. Second and third suggested processes consist of the bulging of a long pipe locally heated by induction coils and the flange forming. The differences between second and third suggestions are the thickness and local heating area of the pipe. That is, the thickness of the initial pipe of third suggestion is larger than that of the final product, and the local heating area is smaller than that of second suggestion. These three suggestions fur forming a long-neck flange are simulated by FE analyses with a commercial cede DEFORM 2D. Especially, the theoretical result of FE analysis on the first suggestion fur forming a long-neck flange is verified by the experiment with aluminum 6063 pipes. From the theoretical and experimental results, it is concluded that three suggested processes are very useful in order to manufacture the pipe with a long-neck flange without any deflects.

  • PDF

A Study on the Forming Process Development of a Long-neck Flange Using a Long Pipe (긴 관을 이용한 롱넥플랜지 성형공정 개발에 관한 연구)

  • Choe, Gan-Dae;Gang, U-Jin;Bae, Won-Byeong;Jo, Jong-Rae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.8
    • /
    • pp.212-219
    • /
    • 2002
  • The pipe with a long-neck flange is widely used in power plants, chemical plants, and shipbuilding companies. Now the pipe with a long-neck flange is manufactured by welding a thick flange to a pipe. But this long-neck flange pipe has some defects in the welding region such as unfitting and local thermal fatigue, which weaken the strength around the neck of the flange. Moreover, after welding the flange, the contacting surfaces of the flange have to be machined flat. So, that is uneconomical. Therefore, to solve the above problems of the long-neck flange pipe, a new process, which has no defects around the flange neck, is required. In this study, three forming processes are suggested to get an enhanced long-neck flange. First suggested process consists of conical forming and flange forming. Second and third suggested processes consist of the bulging of a long pipe locally heated by induction coils and the flange forming. The differences between second and third suggestions are the thickness and local heating area of the pipe. That is, the thickness of the initial pipe of third suggestion is larger than that of the final product, and the local heating area is smaller than that of second suggestion. These three suggestions for forming a long-neck flange are simulated by FE analyses with a commercial code DEFORM 2D. Especially, the theoretical result of FE analysis on the first suggestion for forming a long-neck flange is verified by the experiment with aluminum 6063 pipes. From the theoretical and experimental results, it is concluded that three suggested processes are very useful in order to manufacture the pipe with a long-neck flange without any defects.

The control of poly-grain and internal cavities for high-quality $CaF_2$ single crystal growth of 6inch in diameter (고품질의 직경 6 inch 형석($CaF_2$)단결정 성장을 위한 poly-grain 및 내부 cavity제어)

  • Seo, Soo-Hyung;Joo, Kyoung;Auh, Keun-Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.8 no.4
    • /
    • pp.550-554
    • /
    • 1998
  • We suggested the new method of thermal screen in Bridgman-Stockbarger method to control the polygrain, the internal cavities and solid-liquid (SL) interface. $CaF_2$ single crystal of 6 inch was grown perfectly when we adopted to use a graphite pipe and a ceramic warmer in the conditions of growth rate 2 mm/hr, vertical temperature of $14^{\circ}C$ for freezing and temperature of $1324^{\circ}C$ at conical tip of crucible. The light scattering phenomena occurred by internal cavities were controlled as decreasing the freezing rate to 2 mm/hr and/or as adopting the rotation of melt (7 rpm).

  • PDF

Hydraulic Studies on Recirculating Aquaculture Basin (순환여과식 사육수조의 수리학적 연구)

  • LEE Jong-Sup
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.27 no.2
    • /
    • pp.173-182
    • /
    • 1994
  • A numerical experiment on the effective discharge of waste materials caused in recirculating aquaculture basins was performed. The numerical model used in this study was a 4-level hydrodynamic and advection-diffusion model. Flow structures and settling processes of ss in the various mathematical model basins are discussed. The calculated flow fields of the numerical basin corresponded well with the measured velocity in field basin. In the cases of steep bottom slopes in 4/30, the non-dimensional tractive force($U{\ast}/U{\ast}_c$) which is all important parameter for the deposition pattern of waste materials was stronger than with the mild slope one. The settling pattern of ss depended considerably on the degree of bottom slope of basin. To concentrate deposited waste materials into the center discharge pipe, it is useful to design a cylindrical basin with a steeply conical bottom. In addition, to prevent movement of the deposit area away from the center, it is necessary to locate the circulating ducts at diametrically opposed points on the basin sides.

  • PDF

AN EXPERIMENT ON THE HEARING OF RAINBOW TROUT IN THE INDOOR AQUARIUM IN BUSAN (부산지방에서 실내수조를 이용한 무지개송어의 사육실험)

  • KIM In-Bae;JO Jae Yoon
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.10 no.4
    • /
    • pp.267-273
    • /
    • 1977
  • Rainbow trout were reared in a small indoor aquarium which was equipped with a simple recirculating biofilter combined with a small amount of inflowing water for 199 days from April 25 to November 10, 1977 in Busan where very hot summer air temperature is encountered, and results obtained were promissing as following; 1. The aquarium has dimensions of $1m\;\times\;1m\;\times\;67cm(depth)$, and a bottom center sedimentation chamber of conical type through which out-flowing water is pushing fecal matter and other detritus outward. The conical sedimentation chamber measures 20 cm depth and 20 cm diameter at its upper mouth and tapers to the bottom end which is connected to 4 cm diameter draining pipe. The draining pipe goes through under the tank and then is elevated on the side. The water depth was maintained at about 40 cm depth by adjusting the heigh of draining pipe. The filter bed contained 16 l of $3\~5\;mm$ zeolite gravels, and water circulation rate was about 1030 l/hr. 2. Continuous inflowing water resulted in a good elimination of waste materials through its outflowing water thus reducing waste loading in the filter. 3. Mean temperature of water in the rearing aquarium containing about 400 l water volume was maintained at around 20 to $22^{\circ}C$ by 0.59 l/min of the inflowing well water which usually maintained the temperature of $17^{\circ}C$ during the hot summer season from the first of July to the first of October when the 10-days-mean air temperature ranged from $20^{\circ}\;to\;27.3^{\circ}C$ $(total\;mean\;24.6^{\circ}C) $ and under this condition the fish continued normal growth. 4. The production per 1 l/min of inflowing water with this simple biofilteration reached 30 hg. 5. The total cost including all feed and power during this experimental rearing period fell well within the economic establishment and if the feed and filteration system are improved the benefit-cost ratio will be much increased.

  • PDF