지하철은 버스와 택시에 비해 많은 승객들을 안전하고 신속하게 대량 수송할 수 있는 미래 지향적인 교통수단이다. 지하철 이용자의 증가에 따른 혼잡도 증가는 지하철을 쾌적하게 이용할 수 있는 시민들의 권리를 저해하는 요인 중의 하나이다. 따라서 지하철 내의 혼잡도 예측은 승객의 이용 편의성과 쾌적성을 극대화할 수 방법 중 하나이다. 본 논문에서는 기존의 지하철 혼잡도를 다중 회귀 분석으로 예측하고 빅데이터 처리를 통한 실시간으로 혼잡도를 모니터링하고, 자신의 출발역과 도착역 정보뿐만 아니라 다양한 정보를 추가하여 개인화된 혼잡도 예측 시스템을 제안한다. 제안된 혼잡도 예측 시스템을 적용한 결과 예측혼잡도가 실제혼잡도에 비해 평균 81% 정확도를 보였다. 본 논문에서 제안한 예측 및 추천 어플리케이션을 지하철 고객에 적용하면 지하철 혼잡도 예측과 개인 사용자의 편리성에 도움이 될 것으로 예상된다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제17권1호
/
pp.216-238
/
2023
In intelligent transportation systems, traffic management is an important task. The accurate forecasting of traffic characteristics like flow, congestion, and density is still active research because of the non-linear nature and uncertainty of the spatiotemporal data. Inclement weather, such as rain and snow, and other special events such as holidays, accidents, and road closures have a significant impact on driving and the average speed of vehicles on the road, which lowers traffic capacity and causes congestion in a widespread manner. This work designs a model for multivariate short-term traffic congestion prediction using SLSTM_AE-BiLSTM. The proposed design consists of a Bidirectional Long Short Term Memory(BiLSTM) network to predict traffic flow value and a Convolutional Neural network (CNN) model for detecting the congestion status. This model uses spatial static temporal dynamic data. The stacked Long Short Term Memory Autoencoder (SLSTM AE) is used to encode the weather features into a reduced and more informative feature space. BiLSTM model is used to capture the features from the past and present traffic data simultaneously and also to identify the long-term dependencies. It uses the traffic data and encoded weather data to perform the traffic flow prediction. The CNN model is used to predict the recurring congestion status based on the predicted traffic flow value at a particular urban traffic network. In this work, a publicly available Caltrans PEMS dataset with traffic parameters is used. The proposed model generates the congestion prediction with an accuracy rate of 92.74% which is slightly better when compared with other deep learning models for congestion prediction.
ATM ABR service controls network traffic using feedback information on the network congestion situation in order to guarantee the demanded service qualities and the available cell rates. In this paper we apply the control method using queue length prediction to the formation of feedback information for more efficient ABR traffic control. If backward node receive the longer delayed feedback information on the impending congestion, the switch can be already congested from the uncontrolled arriving traffic and the fluctuation of queue length can be inefficiently high in the continuing time intervals. The feedback control method proposed in this paper predicts the queue length in the switch using the slope of queue length prediction function and queue length changes in time-series. The predicted congestion information is backward to the node. NLMS and neural network are used as the predictive control functions, and they are compared from performance on the queue length prediction. Simulation results show the efficiency of the proposed method compared to the feedback control method without the prediction. Therefore, we conclude that the efficient congestion and stability of the queue length controls are possible using the prediction scheme that can resolve the problems caused from the longer delays of the feedback information.
This study applied regression analysis to evaluate the impact of hourly average congestion calculated by bumper model in the congested area of each passage of each port on the peak time congestion, to suggest the model formula that can predict the peak time congestion. This study conducted regression analysis of hourly average congestion and peak time congestion based on the AIS survey study of 20 ports in Korea. As a result of analysis, it was found that the hourly average congestion has a significant impact on the peak time congestion and the prediction model formula was derived. This formula($C_p=4.457C_a+29.202$) can be used to calculate the peak time congestion based on the predicted hourly average congestion.
해상교통 관제구역은 항만 시설을 사용하기 위한 입·출항 선박, 연안 해역을 이동하는 선박 등이 서로 복잡하게 운항하는 교통 패턴을 가지고 있다. 이를 안전하고 효과적으로 관리하기 위해 해상교통관제센터(VTS)에서는 선박을 실시간 모니터링하며 관제 업무를 수행하고 있지만, 교통 혼잡 상황에서는 업무 로드의 증가로 인해 관제 공백이 발생하기도 한다. 이에 교통 혼잡도 및 혼잡 구역을 예측할 수 있다면 보다 효율적인 관제가 가능하지만 현재는 관제사의 경험에 전적으로 의존하고 있는 실정이다. 본 논문에서는 해상교통관제 관점에서 선박 교통 혼잡을 정의하였으며, 항적 데이터를 이용하여 교통 네트워크를 생성하고, 선박 교통 혼잡도 및 혼잡 구역을 예측하는 방법을 제안한다. 실험에서는 실해역 데이터(대산항 VTS)와 예측 결과를 비교 분석하였으며, 이를 통해 제안하는 방법이 관제 지원 도구로서 활용될 수 있는지 검토하였다.
The role of Intelligent Transportation System (ITS) is to efficiently manipulate the traffic flow and reduce the cost in logistics by using the state of the art technologies which combine telecommunication, sensor, and control technology. Especially, the hardware part of ITS is rapidly adapting to the up-to-date techniques in GPS and telematics to provide essential raw data to the controllers. However, the software part of ITS needs more sophisticated techniques to take care of vast amount of on-line data to be analyzed by the controller for their decision makings. In this paper, the authors develop a traffic congestion prediction model based on several different parameters from the sensory data captured in the Vehicle Detection System (VDS). This model uses the neural network technology in analyzing the traffic flow and predicting the traffic congestion in the designated area. This model also validates the results by analyzing the errors between actual traffic data and prediction program.
본 논문에서는 선로의 이용률 예측을 기반으로 하여 폴링 주기를 동적으로 변경시킬 수 있는 새로운 폴링 기법을 제시한다. 폴링은 네트워크 모니터링의 가장 중요한 기능이지만, 네트워크가 congestion 상태일 때 과대한 폴링 데이터는 네트워크를 심각한 congestion 상태로 만든다. 따라서 기존의 여러 폴링 기법들이 이전 시점에 폴링 요청했을 때 수신한 응답 메시지의 Round Trip Time 또는 폴링한 값의 선로 이용률을 통해 네트워크 congestion 또는 에이전트의 로드 여부를 판단하여 폴링 주기를 변경하여 폴링 트래픽을 조절하였으나 이는 이전 시점의 폴링을 근거로 폴링 주기를 변경하는 기법이기 때문에 폴링하고자 하는 당 시점의 네트워크 상태를 반영하지 못한다. 본 논문에서 제시하는 기법은 과거의 데이터를 근거로 폴링 시점에 폴링 데이터가 폴링 경로 상의 선로 이용률 임계값을 위반하는지를 예측하여 이를 통해 폴링 주기를 변경시킨다. 본 논문에서는 Box-Jenkins의 AR (Autoregressive) 모델을 사용하여 네트워크를 구성하는 각 선로의 이용률을 예측하였고 임계값 위반 여부를 확률로 제시하였다. 또한, 제시한 선로 이용률 예측 기반의 동적 폴링 기법을 실제 네트워크에 적용하여 적합성 여부를 평가하였고, 실험을 통하여 적절한 수준의 선로 이용률 임계값과 임계값 위반 확률을 판단함으로써 본 기법의 성능을 최대화하였다.
인공 지능이 발전함에 따라 예측 시스템은 우리의 삶에 필수적인 기술 중 하나로 자리를 잡았다. 이러한 기술의 성장에도 불구하고, 21세기 사거리 교통 체증은 계속해서 문제 되어 왔다. 본 논문에서는 Conv-LSTM(: Convolutional-Long Short-Term Memory) 알고리즘을 이용한 사거리 교통 체증 예측 시스템을 제안한다. 제안한 시스템은 교통 체증이 발생하는 사거리에 시간대별 교통 정보를 학습한 데이터를 모델링 한다. 시간의 흐름에 따라 기록된 교통량 데이터로 교통 체증을 예측하며. 예측된 결과를 기반으로 사거리 교통 신호를 제어하고, 일정한 교통량으로 유지한다. VDS(: Vehicle Detection System)센서를 활용하여 도로 혼잡도 데이터를 정의하고, 교통을 원활하게 하기 위하여 각각의 교차로를 Conv-LSTM 알고리즘기반 네트워크 시스템으로 구성하였다.
지하철은 사람들이 일상적으로 이용하는 대중교통으로 자리잡고 있다. 특히 2호선은 지하철 승객이 하루동안 가장 많이 이용하는 역들이 포함되어 있는 호선으로 출퇴근 시간대에는 높은 혼잡도로 인해 압사사고의 위험성이 높아지고 있으며, 이는 지하철을 이용하는 사람들의 안전성과 쾌적함을 저하시킨다. 따라서 지하철 역사 내 혼잡도 예측을 바탕으로 높은 혼잡도로 인해 발생하는 문제를 대비할 필요가 있다. 이를 위해 본 연구에서는 출퇴근 시간대 혼잡 여부를 판별하는 머신러닝 분류 모델을 제안한다. 선행연구를 통해 지하철 혼잡도에 영향을 주는 변수를 파악하고, 공공데이터포털에서 출퇴근 시간대의 2호선 지하철 혼잡도 데이터셋을 수집하여 머신러닝을 기반하여 2호선 지하철 역사 내 혼잡 여부를 예측한다. 본 연구에서 제안하는 출퇴근 시간대 2호선 역사 내 혼잡도 예측 모델은 지하철 이용객의 안전과 만족도를 향상시키기 위한 지하철 운영 계획 수립에 활용될 수 있을 것으로 기대된다.
교통관리센터에 축적되어 있는 속도 이력데이터에는 반복 비반복 정체 시공간 전개에 대한 상세한 정보가 모두 들어있으나, 도해법에 의해 다루어져 왔기 때문에 많은 양의 이력데이터를 처리하여 교통상황예측이나 정보제공에 활용할 수 없는 한계가 존재하였다. 본 논문에서는, 기존의 Classification과 Density-Based Clustering 알고리즘을 속도 시공간 데이터 특성에 맞게 조합하고 변형하여 정체 시공간 영역을 자동 인식하는 알고리즘과, 정체파급길이, 파급속도, 해소속도 등 정체 시공간 전개 패턴의 특성치를 산정하는 알고리즘을 개발하였다, 본 알고리즘은, 교통관리센터에 축적되어 있는 방대한 양의 이력데이터를 자동으로 분석하여 자세한 정체 관련 정보를 추출할 수 있고, 산정된 특성치를 가지고 각 센터의 필요에 따라 다양한 정보를 2차 생성하고 활용할 수 있는 장점이 있다. 본 연구결과는 향후 반복 비반복 정체에 대한 예측과 대응이 획기적으로 개선되는데 초석이 될 것으로 기대된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.