• Title/Summary/Keyword: Congestion Control Mechanism

Search Result 178, Processing Time 0.033 seconds

TCP Performance Enhancement over the Wireless Networks by Using CPC and ZWSC (CPC와 ZWSC를 이용한 무선 망에서의 TCP 성능 향상 방안)

  • Lee, Myung-Sub;Park, Young-Min;Chang, Joo-Seok;Park, Chang-Hyeon
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.1 no.1
    • /
    • pp.24-30
    • /
    • 2006
  • With the original Transmission Control Protocol(TCP) design, which is particularly targeted at the wired networks, a packet loss is assumed to be caused by the network congestion. In the wireless environment where the chances to lose packets due to transmission bit errors are not negligible, though, this assumption may result in unnecessary TCP performance degradation. In these days, many papers describe about wireless-TCP which has suggested how to avoid congestion control when packet loss over the wireless network. In this paper, an enhancement scheme is proposed by modifying SNOOP scheme. To enhance the original SNOOP scheme, CPC(Consecutive Packet Control) and ZWSC(Zero Window Size Control) are added. The invocation of congestion control mechanism is now minimized by knowing the cause of packet loss. We use simulation to compare the overhead and the performance of the proposed schemes, and to show that the proposed schemes improve the TCP performance compares to SNOOP by knowing the cause of packet loss at the base station.

  • PDF

Estimation and Prediction-Based Connection Admission Control in Broadband Satellite Systems

  • Jang, Yeong-Min
    • ETRI Journal
    • /
    • v.22 no.4
    • /
    • pp.40-50
    • /
    • 2000
  • We apply a "sliding-window" Maximum Likelihood(ML) estimator to estimate traffic parameters On-Off source and develop a method for estimating stochastic predicted individual cell arrival rates. Based on these results, we propose a simple Connection Admission Control(CAC)scheme for delay sensitive services in broadband onboard packet switching satellite systems. The algorithms are motivated by the limited onboard satellite buffer, the large propagation delay, and low computational capabilities inherent in satellite communication systems. We develop an algorithm using the predicted individual cell loss ratio instead of using steady state cell loss ratios. We demonstrate the CAC benefits of this approach over using steady state cell loss ratios as well as predicted total cell loss ratios. We also derive the predictive saturation probability and the predictive cell loss ratio and use them to control the total number of connections. Predictive congestion control mechanisms allow a satellite network to operate in the optimum region of low delay and high throughput. This is different from the traditional reactive congestion control mechanism that allows the network to recover from the congested state. Numerical and simulation results obtained suggest that the proposed predictive scheme is a promising approach for real time CAC.

  • PDF

The enhance driority transfer control mechanism for multimedia communication in ATM networks (ATM 망에서 멀티미디어 통신을 위한 EPT(enhanced priority transfer)제어기법)

  • 박성호;박성곤;최승권;조용환
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.23 no.9A
    • /
    • pp.2249-2257
    • /
    • 1998
  • In this paper, we propose the enhanced priority control algorithm that adaptively controls the cell service ratio according to the relative cell occupancy ratio of buffer. The asynchronous transfer mode (ATM) provides the means to support various multimedia services in broadband networks. To support multimedia services, various data traffics of different priorities should be controlled effectively. And also it needs congestion control functions required in the netowrk to carry out the control operation. To accomplish this in a flexible and effective manner, priority classes for the different services ar ecommonly used. The proposed enhanced priority control mechanism have two service calsses of the delay sensitive class and the loss sensitive class. The simulation results show that te proposed control mechanism improves the QoS, the charateristics of cell loss probability and mean cell delay time, by selecting propeor relativ ecell occupancy ratio of buffer and the average arrival rate.

  • PDF

A study on improving fairness and congestion control of DQDB using buffer threshold value (버퍼의 문턱치값을 이용한 DQDB망의 공평성 개선 및 혼잡 제어에 관한 연구)

  • 고성현;조진교
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.4
    • /
    • pp.618-636
    • /
    • 1997
  • DQDB(Distributed Queue Dual Bus) protocol, the IEEE 802.6 standard protocol for metropolitan area networks, does not fully take advantage of the capabilities of dual bus architecture. Although fairness in bandwidth distribution among nodes is improved when using so called the bandwidth balancing mechanism, the protocol requires a considerable amount of time to adjust to changes in the network load. Additionally, the bandwidth balancing mechanism leaves a portion of the available bandwidth unused. In a high-speed backbone network, each node may act as a bridge/ router which connects several LANs as well as hosts. However, Because the existence of high speed LANs becomes commonplace, the congestionmay occur on a node because of the limitation on access rate to the backbone network and on available buffer spaces. to release the congestion, it is desirable to install some congestion control algorithm in the node. In this paper, we propose an efficient congestion control mechanism and fair and waster-free MAC protocol for dual bus network. In this protocol, all the buffers in the network can be shared in such a way that the transmission rate of each node can be set proportional to its load. In other words, a heavily loaded node obtains a larger bandwidth to send the sements so tht the congestion can be avoided while the uncongested nodes slow down their transmission rate and store the incoming segments into thier buffers. this implies that the buffers on the network can be shared dynamically. Simulation results show that the proposed probotol significantly reduces the segment queueing delay of a heavily loaded node and segment loss rate when compared with original DQDB. And it enables an attractive high throughput in the backbone network. Because in the proposed protocol, each node does not send a requet by the segment but send a request one time in the meaning of having segments, the frequency of sending requests is very low in the proposed protocol. so the proposed protocol signigificantly reduces the segment queuing dely. and In the proposed protocol, each node uses bandwidth in proportion to its load. so In case of limitation of available buffer spaces, the proposed protocol reduces segment loss rate of a heavily loaded node. Bandwidth balancing DQDB requires the wastage of bandwidth to be fair bandwidth allocation. But the proposed DQDB MAC protocol enables fair bandwidth without wasting bandwidth by using bandwidth one after another among active nodes.

  • PDF

An Error Recovery Mechanism for Communications with Reliability in Sensor Network (센서 네트워크에서 신뢰성 있는 통신을 위한 에러 복구 기법)

  • Min, Byung-Ung;Kim, Dong-Il
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.06a
    • /
    • pp.360-363
    • /
    • 2007
  • In sensor network, the importance of transporting data with reliability is growing gradually to support communications. Data flow from sink to nodes needs reliability for the control or management, that is very sensitive and intolerable, however relatively, data flow from nodes to sink is tolerable. In this paper, with emphasis of the data flow from sink to nodes, we proposed the mechanism that establishes confidence interval for transport. Establishing confidence interval hop-by-hop, not end to end, if errors happen or there's missing data, this mechanism recovers them with selective acknowledgement using fixed window. In addition, this mechanism supports traffic congestion control depending on the buffer condition. Through the simulation, we showed that this mechanism has an excellent performance for error recovery in sensor network.

  • PDF

Virtual Arrival Mechanism for IEEE 802.15.4 beacon enabled networks (비콘을 사용하는 IEEE 802.15.4 네트워크를 위한 가상 도착 메커니즘)

  • Ha, Jae-Yeol;Lee, Jong-Wook;Kwon, Wook-Hyun;Kim, Jung-Joon;Kim, Yong-Ho;Shim, Young-Hee
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2005.08a
    • /
    • pp.67-73
    • /
    • 2005
  • For power constrained applications, IEEE 802.15.4 networks may be operated in beacon enabled mode with inactive period. In this paper, we propose the Virtual Arrival Mechanism (VAM) to avoid the congestion at the beginning of each contention access period (CAP). Virtual Arrival Mechanism (VAM) is a kind of traffic shaping that spread the traffics congested at the beginning of CAP into the whole CAP. By using VAM, collisions and energy consumption can be reduced. Finally, we evaluate the performance enhancement of VAM using NS-2 simulator.

  • PDF

Segment-based Buffer Management for Multi-level Streaming Service in the Proxy System (프록시 시스템에서 multi-level 스트리밍 서비스를 위한 세그먼트 기반의 버퍼관리)

  • Lee, Chong-Deuk
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.11
    • /
    • pp.135-142
    • /
    • 2010
  • QoS in the proxy system are under heavy influence from interferences such as congestion, latency, and retransmission. Also, multi-level streaming services affects from temporal synchronization, which lead to degrade the service quality. This paper proposes a new segment-based buffer management mechanism which reduces performance degradation of streaming services and enhances throughput of streaming due to drawbacks of the proxy system. The proposed paper optimizes streaming services by: 1) Use of segment-based buffer management mechanism, 2) Minimization of overhead due to congestion and interference, and 3) Minimization of retransmission due to disconnection and delay. This paper utilizes fuzzy value $\mu$ and cost weight $\omega$ to process the result. The simulation result shows that the proposed mechanism has better performance in buffer cache control rate, average packet loss rate, and delay saving rate with stream relevance metric than the other existing methods of fixed segmentation method, pyramid segmentation method, and skyscraper segmentation method.

An Error Recovery Mechanism for Wireless Sensor Networks

  • Kim, Dong-Il
    • Journal of information and communication convergence engineering
    • /
    • v.10 no.3
    • /
    • pp.237-241
    • /
    • 2012
  • In wireless sensor networks, the importance of transporting data correctly with reliability is increasing gradually along with the need to support communications between the nodes and sink. Data flow from the sink to the nodes requires reliability for control or management that is very sensitive and intolerant of error; however, data flow from the nodes to the sink is relatively tolerant. In this paper, with emphasis on the data flow from the sink to the nodes, we propose a mechanism that considers accurate transport with reliability hop-by-hop. During the process of sending the data, if errors occur or data is missing, the proposed mechanism supports error recovery using a fixed window with selective acknowledgment. In addition, this mechanism supports congestion control depending on the buffer condition. Through the simulation, we show that this mechanism is accurate, reliable, and proper for transport in wireless sensor networks.

QUEUEING ANALYSIS OF THE HOL PRIORITY LEAKY BUCKET SCHEME

  • Choi, Doo-Il
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.7 no.1
    • /
    • pp.15-23
    • /
    • 2003
  • ATM networks provide the various kinds of service which require the different Quality of Services(QoS) such as loss and delay. By statistically multiplexing of traffics and the uncertainty and fluctuation of source traffic pattern, the congestion may occur. The leaky bucket scheme is a representative policing mechanism for preventive congestion control. In this paper, we analyze the HOL(Head-of-Line) priority leaky bucket scheme. That is, traffics are classified into real-time and nonreal-time traffic. The real-time traffic has priority over nonreal-time traffic for transmission. For proposed mechanism, we obtain the system state distribution, finally the loss probability and the mean waiting time of real-time and nonreal-time traffic. The simple numerical examples also are presented.

  • PDF

A Representative-based Multicast Congestion Control for Real-time Multimedia Applications (실시간 멀티미디어 응용을 위한 대표자 기반의 멀티캐스트 혼잡 제어)

  • Song, Myung-Joon;Cha, Ho-Jung;Lee, Dong-Ho
    • Journal of KIISE:Information Networking
    • /
    • v.27 no.1
    • /
    • pp.58-67
    • /
    • 2000
  • The paper presents a representative-based feedback mechanism and rate adaptation policy for congestion control in multicast traffic for multimedia applications. In multicast congestion control, feedback implosion occurs as many receivers send feedback to a sender. We propose to use representatives to avoid the feedback implosion. In our scheme, receivers feedback packet loss information periodically and a sender adapts the sending rate based on the information collected through a hierarchy of representatives. A representative is selected in each region and roles as a filter to decrease the number of feedbacks. The simulation results show that the proposed scheme solves the feedback implosion problem and well adapts in a congested situation.

  • PDF