J. KSIAM Vol.7, No.1, 15-23, 2003

QUEUEING ANALYSIS OF THE HOL
PRIORITY LEAKY BUCKET SCHEME

Doo I CHol

ABSTRACT. ATM networks provide the various kinds of service which require the dif-
ferent Quality of Services(QoS) such as loss and delay. By statistically multiplexing of
traffics and the uncertainty and fluctuation of source traffic pattern, the congestion may
occur. The leaky bucket scheme is a representative policing mechanism for preventive
congestion control. In this paper, we analyze the HOL( Head-of-Line) priority leaky
bucket scheme. That is, traffics are classified into real-time and nonreal-time traffic.
The real-time traffic has priority over nonreal-time traffic for transmission. For proposed
mechanism, we obtain the system state distribution, finally the loss probability and the
mean waiting time of real-time and nonreal-time traffic. The simple numerical examples
also are presented.

1. INTRODUCTION

ATM networks [1] provide the various kinds of services which require the different
Quality of Services (QoS). Since the Broadband ISDN user terminals in ATM networks
generate cells only when they have information to transmit and these cells are statis-
tically multiplexed, the source traffic pattern has the uncertainty and fluctuates. In
the ATM networks, the network resources are allocated through a negotiation between
the user and the network during the connection establishment phase. To prevent the
ATM network from reaching an unacceptable congestion level due to unexpected traffic
variation or due to intentional excess of the negotiated parameters, it is necessary to
monitor whether the traffic flow on every virtual channel connection conforms to the
negotiated parameters or not. This function is called the policing or UPC ( Usage
Parameter Control ) function.

The Leaky Bucket (LB) scheme [2] is a representative UPC mechanism taking into
account the violation probability, dynamic reaction time and implementation complex-
ity. However, the advent of fiber optic media and transmission technology increase the
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reliability of networks such that the needs for intensive error detections and corrections
are no longer required. While congestion control is still needed to allocate the network
resources fairly so that overload of one traffic does not deteriorate the performance of
other traffics. Such congestion control must be a preventive control.

We analyze the Head of Line ( HOL ) priority leaky bucket scheme. This HOL
priority leaky bucket scheme is more simple in implementation complexity than that
of the leaky bucket scheme with QLT[6]. Also, this is support to the real-time traffic
with distinct delay requirement.

In Section 2, we give the detailed description of the HOL priority leaky bucket
scheme. In Section 3, we analyze the model when the arrival of the real-time traffic
is Markov-modulated Poisson process ( MMPP ). Thus, the system state distribution
is deriven by using the embedded Markov chain method. Finally, we obtain the loss
probability and the mean waiting time. In Section 4, we give a special case when the
arrivals of the real-time and nonreal-time traffic are Poisson processes. And the simple
examples are given in Section 5.

2. MODEL DESCRIPTION

There are two separate buffers to accommodate the cells of two types ( that is,
real-time and nonreal-time traffic ) and a token pool to store tokens generated. The
token is generated every constant interval T. The size of token pool is M. If the token
pool is full, the newly generated tokens are discarded. The buffer size for real-time
and nonreal-time traffic is assumed to be K and Kj, respectively. The cells queued
in each buffer are served on the first-come first-service basis.

The arrivals of real-time traffic is assumed to follow a Markov-modulated Poisson
Process (MMPP) with representation (@, A;). This assumption is to reflect the bursti-
ness and correlation of real-time traffic such as voice[3][4]. The N x N matrix Q is
the infinitesimal generator of the underlying Markov process J(t) with state space
1,2,---,N. The A; = diag(\}) is the arrival rate matrix. That is, if the underlying
Markov process J(t) is in state ¢ (i = 1,2,--- , N), the arrival follows a Poisson process
with rate A\}. The MMPP arrival has been extensively used to model bursty traffics in
ATM networks[5]. We assume the nonreal-time traffic such as data to follow a Poisson
process with rate A;. We refer to real-time and nonreal-time traffic as type-1 and
type-2.

The transmission of type-1 and type-2 is determined according to Head-of-Line
priority schedule as follows ( or see Fig. 1 ):

1) If there are any tokens in the token pool ( in this case there are no cells waiting in
the buffers ), the cell arriving regardless of traffic type is transmitted, consuming
a token.

2) If at least one type-1 cell exists in buffer, the cell of type-1 is transmitted.

3) The cells of type-2 are transmitted only if there is no cells of type-1.
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Let 7 be the stationary probability vector of the underlying Markov process J(¢). Then
7 is given by solving the equations

@ =0 Te = 1
where e denotes a column vector with all elements equal to one.

3. ANALYSIS

To derive the distribution of system state at token generation instants, we need to
know the number of arrivals during the token generation interval T'. Let M(t)(M1(t))
be the number of total arrivals regardless of traffic type (type-1, respectively) during
interval (0,t]. Now we define the conditional probabilities

p(n,t)i; = P{M(t) = n, J(t) = j|M(0) =0, J(0) = i}
p1(n,t)i; = P{M:(t) = n, J(t) = j|M1(0) = 0, J(0) =1}
n>0,1<:j5<N.

By Chapman-Kolmogorov’s forward equations, we have the following differential-difference
equations for N x N matrices P(n,t) £ (p(n,t);;) and Pi(n,t) £ (p1(n, t)s;):

~
8
=

I

P(n,t)(Q —A)+ P(n—1,H)A
Pl(n7t)(Q - Al) +P1(n - 17t)A1

29

5

*
I

where P(—1,t) and P;(—1,¢) are the matrices 0 and A = A; + Xo1.
Then, it is easily shown that the matrices P(n,t) and P;(n,t) have the probability
generating functions

[ee]
P(z,t) 2 ) P(n, )"
n=0
— eR(z)t
_ o0
Pi(z,t) £ " Pi(n,t)2"
n=0
= (2}t |2] < 1.

where R(z) = Q + (z — 1)A and R1(2) = Q + (¢ — 1)A1.
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The effective arrival rate A* and M by arrival A and A; are expressed by \* = wAe
and A} = mA;e respectively.

Let Bi(n) and Na(n) be the number of type-1 and type-2 cells queued in buffer just
after the nth token generation epoch. Let T'(n) be the number of tokens in the token
pool just after the nth token generation epoch. Since the cells wait in the buffer only
if there is no token in the token pool, we can express the state of the buffer for type-1
cells and the token pool as follows[3]

Ni(n) £ Bi(n)+M — T(n).

Then, the process {(N1(n), No(n), J(n)),n > 0} forms a 3-dimensional Markov chain

with finite state space {(0,0,1),--- ,(M—1,0,N),(M,0,1),--+ ,(M,0,N),(M,1,1),--- ,(M+
Ki —1,K5,N). Let X; be the first passage time to the ith cell arrival regardless of
traffic type, that is

X; = inf{t|M;(t) + Ma(t) = i|M1(0) + M2(0) = 0}

We also introduce the following joint probabilities:

Pm.n(4,7) = the joint probability of m and n arrivals of type-1 and type-2 cells
during interval (0,7] and J(T') = j, given J(0) = .

p’,“n’n(i, 7) = the joint probability that there are total k arrivals regardless of traffic type
during interval (0, X;] and m and n arrivals of type-1 and type-2 cells
during interval (X;,T] and J(T) = j, given that J(0) = d.

Let pm,n and pf, , be matrices with its (i,7)-element as Pmon(i,5) and pf, . (i,5), re-
spectively. Then, pp, , and an,n are given by

(AT)" o—HT

Pmn = pl(maT) Y

T
plrgn,nZ/ P{t<X¢St—l—dt,Ml(T—t):m,Mg(T—t):n}
0

T
Xo(T - )}
= / P(k - 1,t) AP (m,T — t){—%(—mle_h(rf—t)dt
O .
Let’s introduce the following matrices:
Ak - P(k’T)’ AZ = (p/g.-:O +p,(i),17pzi,1 +p6,2’ T ’p’i,Kz—l +pé,?z7p§_,?2)

kE _ (k k k K kK _ (k k Lk ko
By, = (Pm,0sPm,157 apm,KQ_ppij Bgl = (pfl,oapfl,la' ’pﬁl,m—l’p?l,lﬁ)
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D00 Po1tP0 Po2t+Pi1 - PE, TPLEK-1 PiE,
0 , Po,0 Po,1+ P10 -+ PoK»-1tPLE,~1 PLE,-1
C[) = . Cl ==
0 0 0 v Po,0 pl’a
Pko Pr1 oo PR, Pro Pra1 - Pk,
0 Pro - P 1 0 pEO pE——K 1
Ck — . . ' ’ .2 Ck— _ ‘a s 422
0 0 P pk’a 0 0 cen paa

Then, the transition probability matrix Q of the Markov chain is given by

Q=

[Ao+ A1 Ay A ... Ay Ay BY ... BY,_, BY
Ay Al Ay ... Ay AIM_l Bé\/f_l BIAé‘_ll %_41_1
0 Ay Ar . Amop Ay, BYT? . BrR B
0 ... A A B} ... Bk, Br |,
. G O Oy ... Ok, COf
0 0 0 ... 0 Co Ci ... Cxi—2 Cg—
C4 Cs
Co Cr

To derive the probability distribution of the system state just after the token generation
epoch, let’s define the following limiting probabilities

Tk (4) 2 nILH;OP{Nl(”) = k,No(n) = 0,J(n) = j},
0<k<M-—1,
a(j) £ lim P{Ny(n) = k,Na(n) =1, J(n) = j},
M<k<M+EK, 0<1<Ks,
zp = (zk(1),2(2), -+, 2x(N))
Try = (g (1), 25,0(2), -,z (N))

Jay
r = (370,"' Yy TM—1,TM, 05" sy TM, Koy~ 7"EM+K1—1,K2)
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Then, the steady-state probability vector x of the Markov chain {(N1(n), Na(n), J(n)),n >
0} is obtained by solving the equations

ZL‘§=.’E, ze = 1,

where e denotes a column vector with all elements equal to one
Next we derive the stationary probability distribution of the system state at an
arbitrary time instant. Define the limiting probabilities yx(j) and yg i(j) as follows

ye(j) = lim P{Ny(t) = k, No(t) = 0,J (1) =7}, 0<k<M-1,
yra(j) £ Jim P{N:(t) )=k, No(t) =1,J(t) =j}, M<k<M+Ki;, 0<I< Ky,

where Ny(t) = Bi(t) + M — T(t) and Ny(t) is the number of type-2 cells at time .
Consider an arbitrary time 7, and let 77 be the starting time of the token generation
interval which includes the time 7. By considering the system state at the last token
generation epoch before the time 7 and the number of arrivals during the elapsed token
generation interval (0, 7 — 77], we can obtain the probability distribution of the system
state at an arbitrary time 7:

For0<n<M-1,

n
Yn = Z 2 Un—k,
k=0

where

U,, = P{total m-arrivals during the elapsed token generation interval(0,7 — 7]

1 (T
= — p
T /0 (m, t)dt

For M <ni<M+Ki -1, 0<n<K;-1

M-1
= T UM + U,
Yni,na = k —M,ns T IUn—k,na—1s
k=0 k=M 1=0
M—l n1 K2 1
M-k 2:
Yni, Ko = mk‘Un —M?g + : : Tk lUnl k, Kz 1
k=0 k=M [=0

M-1 M+K, -1 no
— M-k
YM+Kine = E :kaKl,nz E : E :xk lUM+K1 k,na—1
k=0

0_<_n2SK2—17
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where

U,i, , = P{ total i-arrivals during interval(0, X;] and then k-and l-arrivals
of type-1 and type-2 cells during interval (X;, 7 — 77]

= —/ / (i — 1,t) APy (k, {AZ(UZ,— DY 320 gsgy

Uk, = P{k-and l-arrivals of type-1 and type-2 cells during interval (0,7 — 7]

m=l
oo
T i
E Ujj - Z U S
m=l[
M~-1 M+K{—-1 K Ko—1
YM+ K, Ko = T — Z Yn — Z E Ynine — E YM4Ky,nq-
n=0 ni=M n2=0 ny=0

Using the above probability distribution, we obtain the following performance mea-
sures:

a. The loss probability

2
Type-1 cells : Pﬁ)SS = Z YMLKin €
M+K;
Type-2 cells : PI%SS = Z Yn,K, €
n=M

b. The mean queue length

Ky 2

Type-1 cells : M, = Z Z WM+in €
3=0 n=0
2 1

Type-2 cells : M, = z Z YM+n,i €

=0 n=0
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c¢. By Little’s law, we obtain the mean waiting time in buffer

M,
Type-1 cells : W, = Y APl
A (1 loss)

M,
Type-2 cells : Wy=——="5—~
Xa(1 = Pig)

4. SPECIAL CASES

In this subsection, we consider special case that arrival of real-time traffic ( type-1
) follows a Poisson process with rate A\;. Let A = A + A2. Then, the X; follows a
gamma distribution with parameter (i, \). In this case, we obtain the following:

_ D)™ QD) e

m! n!
T
pfn,n:/ P{t<Xl§t+dt,M1(T—t):m,Mg(T—t)Z’n,}
0
_ /T )‘(At)i—l e~ M {)‘1 (T — t)}m e—Al(T—t) {>‘2(T - t)}n 6—A2(T—t)dt
o (—1)! m! n!
(}\T)i+m+n AT m+n )\1 m )\2 n .
_ Mym 22 <i<M.
(z’+m+n)!e m ()\) ()\)’ lsisM
1T oy™
Um = T o ml e dt
_ 1 ar s A7)
N )\T{l ; {! }
T
Uy _% (Allj)k —Alt()‘;t) ~Xat gy
k+1
—( JEG - S0 T,
/ / M; ' —)\t{)‘l(uk"— t)} o= (u=t) {Az(ul'— t)}le—/\z(u—t)dtdu
’1,“— : :
S G [ESUCS R ‘”Hfl ")
R PP )\T

With above values, the system state distribution, the loss probability and the mean

waiting time can be substituted.
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5. NUMERICAL EXAMPLES

In this Section, we give a simple numerical examples. For simplicity, let’s assume the
arrivals of real-time and nonreal-ime traffic to be Poisson process with rates i (= A7)
and Ay, respectively. In all numerical examples, we set the token generation interval (
T ) equal to 1 and \; = Ao, Ko = 10, M = 5.

Figs. 2 and 3 show the loss probability and the mean waiting time of each traffic for
various values of the buffer size K;. From these Figures, we see that the loss probability
of nonreal-time traffic is less than that of the real-time traffic, while the waiting time of
the real-time traffic is less than that of nonreal-time traffic. Also, we can observe that
the loss probability and the waiting time of the real-time traffic are more sensitive to
the change of its buffer size K; than that of the nonreal-time traffic. These examples
follows the reference [6] and the more and more many numerical examples for various
performance measures also given in [6].
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