• Title/Summary/Keyword: Congestion Control Mechanism

Search Result 178, Processing Time 0.025 seconds

TCP Delayed Window Update Mechanism for Fighting the Bufferbloat

  • Wang, Min;Yuan, Lingyun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.10
    • /
    • pp.4977-4996
    • /
    • 2016
  • The existence of excessively large and too filled network buffers, known as bufferbloat, has recently gained attention as a major performance problem for delay-sensitive applications. Researchers have made three types of suggestions to solve the bufferbloat problem. One is End to End (E2E) congestion control, second is deployment of Active Queue Management (AQM) techniques and third is the combination of above two. However, these solutions either seem impractical or could not obtain good bandwidth utilization. In this paper, we propose a Transmission Control Protocol(TCP)delayed window update mechanism which uses a congestion detection approach to predict the congestion level of networks. When detecting the network congestion is coming, a delayed window update control strategy is adopted to maintain good protocol performance. If the network is non-congested, the mechanism stops work and congestion window is updated based on the original protocol. The simulation experiments are conducted on both high bandwidth and long delay scenario and low bandwidth and short delay scenario. Experiment results show that TCP delayed window update mechanism can effectively improve the performance of the original protocol, decreasing packet losses and queuing delay while guaranteeing transmission efficiency of the whole network. In addition, it can perform good fairness and TCP friendliness.

General AIMD with Congestion Window Upper Bound

  • Bui, Dang-Quang;Choi, Myeong-Gil;Hwang, Won-Joo
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.12
    • /
    • pp.1798-1804
    • /
    • 2010
  • TCP with AIMD mechanism, one of the most popular protocols in internet, can solve congestion control in wired networks. This protocol, however, is not efficient in wireless networks. This paper proposes a new mechanism namely General AIMD with Congestion Window Upper Bound in which congestion window is limited by an upper bound. By applying optimization theory, we find an optimal policy for congestion window upper bound to maximize network throughput.

Traffic Congestion Control Using PQS in Wireless Multimedia Sensor Networks (무선 멀티미디어 센서 네트워크에서 PQS를 이용한 트래픽 혼잡제어)

  • Lee, Chong-Deuk
    • Journal of Advanced Navigation Technology
    • /
    • v.17 no.2
    • /
    • pp.218-224
    • /
    • 2013
  • Uplink overflow in WMSN (Wireless Multimedia Sensor Networks) aggravates the resource consumption, delay, and traffic congestion. This paper proposes a new traffic congestion control mechanism using popularity. The proposed mechanism controls congestions by dispersing the media traffic, and it control fairly packets according to priority. This paper proposes PQS (Packet Queue Scheduler) to control fairly packets, and the proposed mechanism provides a fair opportunity to all sensor nodes without a specific location. The simulation results show that the proposed mechanism achieves improved performance in throughput, delay ratio, link quality, and buffer queue control ratio compared with those of other existing methods.

A Congestion Control Mechanism for Supporting Differentiated Service in Mobile Ad hoc Networks

  • Kim Jin-Nyun;Ha Nam-Koo;Cho Dong-Hoon;Kim Hyun-Sook;Han Ki-Jun
    • Proceedings of the IEEK Conference
    • /
    • summer
    • /
    • pp.143-146
    • /
    • 2004
  • Differentiated services (DiffServ) has been widely accepted as the service model to adopt for providing quality-of­service (QoS) over the next-generation IP networks. There is a growing need to support QoS in mobile ad hoc networks. Supporting DiffServ in mobile ad hoc networks, however, is very difficult because of the dynamic nature of mobile ad hoc networks, which causes network congestion. The network congestion induces long transfer packet delay and low throughput which make it very difficult to support QoS in mobile ad hoc networks. We propose DiffServ module to support differentiated service in mobile ad hoc networks through congestion control. Our DiffServ module uses the periodical rate control for real time traffic and also uses the best effort bandwidth concession when network congestion occurs. Network congestion is detected by measuring the packet transfer delay or bandwidth threshold of real time traffic. We evaluate our mechanism via a simulation study. Simulation results show our mechanism may offer a low and stable delay and a stable throughput for real time traffic in mobile ad hoc networks.

  • PDF

A Study on TCP-friendly Congestion Control Scheme using Hybrid Approach for Multimedia Streaming in the Internet (인터넷에서 멀티미디어 스트리밍을 위한 하이브리드형 TCP-friendly 혼잡제어기법에 관한 연구)

  • 조정현;나인호
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.10a
    • /
    • pp.837-840
    • /
    • 2003
  • Recently the multimedia streaming traffic such as digital audio and video in the Internet has increased tremendously. Unlike TCP, the UDP protocol, which has been used to transmit streaming traffic through the Internet, does not apply any congestion control mechanism to regulate the data flow through the shared network. If this trend is let go unchecked, these traffic will effect the performance of TCP, which is used to transport data traffic, and may lead to congestion collapse of the Internet. To avoid any adverse effort on the current Internet functionality, A study on a new protocol of modification or addition of some functionality to existing transport protocol for transmitting streaming traffic in the Internet is needed. TCP-frienly congestion control mechanism is classified with window-based congestion control scheme and rate-based congestion control scheme. In this paper, we propose an algorithm for improving the transmitting rate on a hybrid TCP-friendly congestion control scheme combined with widow-based and rate-based congestion control for multimedia streaming in the internet.

  • PDF

A TCP-Friendly Congestion Control Scheme using Hybrid Approach for Reduction of Transmission Delay for Real-Time Video Stream (실시간 비디오 스트림의 전송지연 축소를 위한 TCP 친화적 하이브리드 혼잡제어 기법)

  • 김형진;조정현;나인호
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.2
    • /
    • pp.304-309
    • /
    • 2004
  • Recently, the needs for multimedia stream such as digital audio and video in the Internet has increased tremendously. Unlike TCP, the UDP protocol, which has been used to transmit streaming traffic thorough the Internet, does not apply any congestion control mechanism to regulate the data flow thorough the shared network And it leads to congestion collapse of the Internet and results in long-term transmission delay. To avoid any adverse effect on the current Internet functionality, a now protocol of modification or addition of some functionality to perform congestion control and to reduce huge transmission delay in transmitting of multimedia stream are in study. TCP-friendly congestion control mechanism is classified into two : one is window-based congestion control scheme using general window management functionalities, the other is rate-based congestion control scheme using TCP modeling equation. In this paper, we propose an algorithm for improving the transmitting rate on a hybrid TCP-friendly congestion control scheme combined with widow-based and late-based congestion control for multimedia stream. And we also simulate the performance of improved TEAR implementation using NS. With He simulation results, we show that the improved TEAR can provide better fairness and lower rate fluctuations than TCP.

Congestion Control for the ABR Service of ATM networks with Multiple Congested Nodes and Multicast Connections (다수의 혼잡 노드와 멀티개스트 연결을 가지는 비동기 전송망의 ABR 서비스에 대한 혼잡 제어)

  • Nho, Ji-Myong;Lim, Jong-Tae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.8
    • /
    • pp.629-637
    • /
    • 2000
  • Unbalance between user requirements and insufficient network resources makes a congestion. In the future since the communication networks will have very heavy traffic congestion will be more serious. The ATM networks was recommended to support the B-ISDN service for the future multimedia communication. In thie sense of congestion avoidance and recovery the ABR service category in ATM networks allows the feedback flow control mechanism to dynamically allocate the idle bandwidth of the network to users fairly and to control the network congestion rapidly In this paper we introduce a congestion control scheme using systematical approach to confirm robust stability with respect to unknown round trip delay for the network which has both unicast and multicast connections.

  • PDF

Improving the TCP Retransmission Timer Adjustment Mechanism for Constrained IoT Networks

  • Chansook Lim
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.16 no.1
    • /
    • pp.29-35
    • /
    • 2024
  • TCP is considered as one of the major candidate transport protocols even for constrained IoT networks..In our previous work, we investigated the congestion control mechanism of the uIP TCP. Since the uIP TCP sets the window size to one segment by default, managing the retransmission timer is the primary approach to congestion control. However, the original uIP TCP sets the retransmission timer based on the fixed RTO, it performs poorly when a radio duty cycling mechanism is enabled and the hidden terminal problem is severe. In our previous work, we proposed a TCP retransmission timer adjustment scheme for uIP TCP which adopts the notion of weak RTT estimation of CoCoA, exponential backoffs with variable limits, and dithering. Although our previous work showed that the proposed retransmission timer adjustment scheme can improve performance, we observe that the scheme often causes a node to set the retransmission timer for an excessively too long time period. In this work, we show that slightly modifying the dithering mechanism of the previous scheme is effective for improving TCP fairness.

Efficient Congestion Control for Interworking between 5G-System and LTE

  • Kim, Seog-Gyu
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.2
    • /
    • pp.49-56
    • /
    • 2019
  • In this paper, we propose an efficient congestion control scheme for interworking between 5GS(5G system) and LTE(Long-Term Evolution), called ECC(Efficient Congestion Control). The proposed congestion control scheme (ECC) is considered for coexistence of 5GS and legacy LTE systems and provides a prompt service connectivity based on overriding method while the backoff timer is running in the UE. Also, we briefly introduce Rel-15 5GS from a congestion control perspective and the proposed ECC and simulation results for the existing legacy congestion control mechanism and ECC in the 5GS-LTE coexisting environment are presented. Lastly, the improvement direction is considered in future 3GPP 5GS phase 2 standard in this paper.

CCDC: A Congestion Control Technique for Duty Cycling WSN MAC Protocols

  • Jang, Beakcheol;Yoon, Wonyong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.8
    • /
    • pp.3809-3822
    • /
    • 2017
  • Wireless Sensor Networks hold the limelight because of significant potential for distributed sensing of large geographical areas. The radio duty cycling mechanism that turns off the radio periodically is necessary for the energy conservation, but it deteriorates the network congestion when the traffic load is high, which increases the packet loss and the delay too. Although many papers for WSNs have tried to mitigate network congestion, none of them has mentioned the congestion problem caused by the radio duty cycling of MAC protocols. In this paper, we present a simple and efficient congestion control technique that operates on the radio duty cycling MAC protocol. It detects the congestion by checking the current queue size. If it detects the congestion, it extends the network capacity by adding supplementary wakeup times. Simulation results show that our proposed scheme highly reduces the packet loss and the delay.