• Title/Summary/Keyword: Conformational changes

Search Result 188, Processing Time 0.029 seconds

cis-Diamminedichloroplatinum (II) induces denaturation and conformational changes in pBR322 DNA (cis-Diamminedichloroplatinum(II)에 의한 pBR322 DNA의 변성과 구조 변화)

  • Koo, Ja-Choon;Lim, Chang-Soo;Hahn, Tae-Ryong;Yang, Jai-Myung
    • Applied Biological Chemistry
    • /
    • v.33 no.4
    • /
    • pp.343-348
    • /
    • 1990
  • E. coli LE392, transformed with CDDP-treated pBR322 DNA, was plated on ampicillin containing media. The number of colonies formed on ampicillin containing agar plate was reduced to undetectable level after treat the DNA with 13.3 ${\mu}M$ CDDP. The CDDP-treated pBR322 DNA was susceptible to sing1e strand DNA specific S1 nuclease and it's migration Pattern in agarose gel electrophoresis was changed. These results suggest that CDDP adduction to pBR322 DNA resulted in denaturation of the double helix and changes in it's conformation which ultimately leads In the inactivation of the ampicillin resistant sere.

  • PDF

A Study on The Time For Movement of Myosin Heads by the Twitch Stimulation (Twitch Stimulation에 의한 Myosin Heads 움직임의 시간분석 연구)

  • Kim, Duck-Sool;Jung, Jung-Su;Park, Keun-Ho
    • Journal of the Korean Applied Science and Technology
    • /
    • v.21 no.2
    • /
    • pp.182-189
    • /
    • 2004
  • On contraction of the muscles, marked changes in X-ray reflections are observed, suggesting that conformational changes of contractile molecules and the movement of myosin heads during muscle contraction. Time slice requires tension peak after the onset of stimulation and the height of tension peak depends on the number of twitch cycle. The muscles were stimulated by five successive stimuli at an interval of 80 ms started while the tension was still being exerted by the muscles. The intensity of $I_{11}$, $I_{10}$, $143{\AA}$ and $215{\AA}$ reflection measured with 5ms time resolution and is recorded in isometric tension. The peak height of $I_{11}$ and $143{\AA}$ intensity is changed after the onset of a stimulation $I_i$, and the length of twitch is shortened by successive twitches in the case of stimulation $T_i$. On the other hand, the peak height of In and $215{\AA}$ intensity starts to decrease at the 1st twitch and remains constant at low peak height without appreciable recovery during the contraction term. In the case of successive twitch stimulation, the myosin heads of muscle are once moved from their resting position and never returned to their initial position.

Conformational Change of Human Annexin I by the Binding of $Ca^{2+}$, ATP and cAMP

  • Lee, Bong-Jin;An, Hee-Chul;Lee, Yeon-Hee;Han, Hee-Yong;Na, Doe-Sun
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.2 no.2
    • /
    • pp.141-151
    • /
    • 1998
  • Human annexin I is a member of annexin family of calcium dependent phospholipid binding proteins, which have been implicated in various physiological roles including phospholipase A2(PLA2) inhibition, membrane fusion and calcium channel activity. In this work, the structure of N-terminally truncated human annexin I ({{{{ DELTA }}-annexin I) and its interactions with Ca2+, ATP and cAMP were studied at atomic level by using nuclear magnetic resonance (NMR) spectroscopy. The effect of Ca2+ binding on the structure of {{{{ DELTA }}-annexin I was investigated. The addition of Ca2+ to {{{{ DELTA }}-annexin I caused some changes in 13C NMR spectra. Carbonyl carbon resonances of some histidines were significantly broadened by Ca2+ binding. However, in the case of methionine, phenylalanine, and tyrosin, small changes could be observed. We found that ATP and cAMP bind {{{{ DELTA }}-annexin I, and the binding ratio of ATP to {{{{ DELTA }}-annexin I is 1. These results are well consistent with the report that cAMP and ATP interact with annexin I, and affect the calcium channels formed by annexin I. Because {{{{ DELTA }}-annexin I is a large protein with 35 kDa molecular weight, site-specific (carbonyl-13C) labeling technique was used to study the interaction sites of {{{{ DELTA }}-annexin I with Ca2+. NMR study was focused on the carbonyl carbon resonances of tyrosine, phenylalanine, methionine and histidine residues of {{{{ DELTA }}-annexin I because the number of these amino acids is small in the amino acid sequence of {{{{ DELTA }}-annexin I.

  • PDF

Equilibrium Studies and Thermodynamics for the Mutarotation of Poly(cis-5-methylproline) in Chloroform-Chloroethanol (Chloroform-Chloroethanol 용매중에서 Poly(cis-5-methylproline)의 평형 및 열역학적연구)

  • M. J. Han
    • Journal of the Korean Chemical Society
    • /
    • v.23 no.4
    • /
    • pp.187-197
    • /
    • 1979
  • The molar optical rotation of poly(cis-5-methylproline) was measured in solvent mixtures of chloroform and chloroethanol. After proper allowance for time-dependent mutarota-tions, equilibrium states between form A and form B were observed to occur with a solvent composition of 0.5~10 % chloroethanol in chloroform by volume. From the equilibrium constants, which were calculated by optical rotations at equilibrium measured at three different temperatures (5, 25, and 45 $^{circ}$C), the thermodynamic parameters-free enthalpy, enthalpy and entropy changes for the mutarotation-were evaluated. It was found that starting with equimolar concentrations of form A and form B, the forward mutarotation occurred in the solvent compositions of chloroethanol greater than 3 % by volume, whereas the reverse mutarotation resulted in solvent compositions of chloroethanol less than 3 % by volume. The changes in enthalpy and entropy for the forward mutarotation were found to be positive, while those were for the reverse mutarotation were negative. The driving forces for the forward mutarotation were found to be the increase in entropy, whereas that for the reverse mutarotation was the negative enthalpy change. The thermodynamic data were explained by the interaction between polymer and solvent, i.e., preferential hydrogen bonding of chloroethanol with the carbonyl group in form B over form A, and by difference in conformational energies between form A and form B.

  • PDF

Changes in Allergenicity of Porcine Serum Albumin by Gamma Irradiation

  • Kim, Koth-Bong-Woo-Ri;Lee, So-Young;Song, Eu-Jin;Park, Jin-Gyu;Lee, Ju-Woon;Byun, Myung-Woo;Kim, Kyu-Earn;Ahn, Dong-Hyun
    • Food Science of Animal Resources
    • /
    • v.30 no.3
    • /
    • pp.397-402
    • /
    • 2010
  • Pork is an excellent source of essential nutrients such as protein. However, pork can trigger hypersensitivity and serum albumin of pork is known as major allergen. In this study, to evaluate the effect of gamma irradiation on the allergenicity of porcine serum albumin (PSA), PSA solution was irradiated at 3, 5, 7, 10, 15, and 20 kGy. The changes in the ability of PSA to bind IgG and patient's serum caused by gamma irradiation were observed by ci-ELISA and immunoblotting. SDS-PAGE was used for measuring the conformational change of gamma-irradiated PSA. The ability of 3-kGy-irradiated PSA to bind p-IgG and patient's serum was decreased to 30% and 15%, respectively. The binding ability showed no significant differences among all irradiated samples. SDS-PAGE showed that the irradiated PSA bands were degraded and aggregated. Immunoblotting of irradiated PSA revealed that IgG and patient's serum were rarely recognized at 3 kGy. Therefore, gamma irradiation could be applied to less-allergenic pork products.

Quality parameters of chicken breast meat affected by carcass scalding conditions

  • Silva-Buzanello, Rosana Aparecida da;Schuch, Alexia Francielli;Gasparin, Andre Wilhan;Torquato, Alex Sanches;Scremin, Fernando Reinoldo;Canan, Cristiane;Soares, Adriana Lourenco
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.8
    • /
    • pp.1186-1194
    • /
    • 2019
  • Objective: The influence of broiler carcass scalding conditions on chicken breast meat quality parameters was investigated. Methods: Two hundred and seventy Cobb broiler chickens from 42 to 48 days old were slaughtered according to the standard industry practice and scalded in five temperature/time combinations-$T_1$, $54^{\circ}C/210s$; $T_2$, $55^{\circ}C/180s$; $T_3$, $56^{\circ}C/150s$; $T_4$, $57^{\circ}C/120s$; $T_5$, $58^{\circ}C/90s$. Results: Scalding temperature increase resulted in higher values of external and ventral lightness and in protein functionality reduction-determined by emulsification capacity and protein denaturation-in chicken breast fillets 24 h post-mortem. Protein secondary structures had conformational changes, with a decrease of the ${\alpha}$-helix and an increase of the ${\beta}$-sheet and ${\beta}$-turn proportions, mainly in $T_1$ and $T_5$ samples, determined by Fourier-transform infrared spectroscopy in an attenuated reflectance mode analysis. The chemical composition, pH, water holding capacity and Warner-Bratzler shear force did not differ among the treatments. In the fatty acid profile, the 18:1n-9 was lower in $T_5$, which suggested that the high scalding-temperature could have caused the lipid oxidation. The values of the polyunsaturated fatty acids (PUFA), such as 22:2, 20:4n-6, and 22:6n-3, were highest in the $T_5$, thus being related to the phospholipid cellular membrane collapse in this experimental condition and subsequent release of these PUFA. Conclusion: Intermediate scalding-parameters avoided the negative changes in the chicken meat quality.

Biochemical and Biodiversity Insights into Heavy Metal Ion-Responsive Transcription Regulators for Synthetic Biological Heavy Metal Sensors

  • Jung, Jaejoon;Lee, Sang Jun
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.10
    • /
    • pp.1522-1542
    • /
    • 2019
  • To adapt to environmental changes and to maintain cellular homeostasis, microorganisms adjust the intracellular concentrations of biochemical compounds, including metal ions; these are essential for the catalytic function of many enzymes in cells, but excessive amounts of essential metals and heavy metals cause cellular damage. Metal-responsive transcriptional regulators play pivotal roles in metal uptake, pumping out, sequestration, and oxidation or reduction to a less toxic status via regulating the expression of the detoxification-related genes. The sensory and regulatory functions of the metalloregulators have made them as attractive biological parts for synthetic biology, and the exceptional sensitivity and selectivity of metalloregulators toward metal ions have been used in heavy metal biosensors to cope with prevalent heavy metal contamination. Due to their importance, substantial efforts have been made to characterize heavy metal-responsive transcriptional regulators and to develop heavy metal-sensing biosensors. In this review, we summarize the biochemical data for the two major metalloregulator families, SmtB/ArsR and MerR, to describe their metal-binding sites, specific chelating chemistry, and conformational changes. Based on our understanding of the regulatory mechanisms, previously developed metal biosensors are examined to point out their limitations, such as high background noise and a lack of well-characterized biological parts. We discuss several strategies to improve the functionality of the metal biosensors, such as reducing the background noise and amplifying the output signal. From the perspective of making heavy metal biosensors, we suggest that the characterization of novel metalloregulators and the fabrication of exquisitely designed genetic circuits will be required.

Conformational transition of regenerated Antheraea pernyi silk fibroin sponge treated with aqueous ethanol solution and in vitro wound healing effect of wild silk fibroin solution (작잠 실크 피브로인에 의한 in vitro 상처 회복 효과 및 에탄올 처리에 따른 작잠 실크 피브로인 스폰지의 구조 전이)

  • Lee, Kwang-Gill;Jo, You-Young;Yeo, Joo-Hong;Lee, Heui-Sam;Kim, Kee-Young;Kim, Hyun-Bok;Kim, An-Sook;Kim, Seong-Gon;Kweon, HaeYong
    • Journal of Sericultural and Entomological Science
    • /
    • v.52 no.1
    • /
    • pp.10-15
    • /
    • 2014
  • Regenerated Antheraea pernyi silk sponge was prepared using calcium nitrate 4 hydrate melt and examined the conformational changes treated with aqueous ethanol solution. The conformation of silk sponges was changed from random coil structure to ${\beta}$-sheet and ${\alpha}$-helix conformation with low ethanol concentration (50 ~ 70%). On the other hand, that of silk sponges with 80% ethanol treatment showed ${\beta}$-sheet ($700cm^{-1}$), ${\alpha}$-helix ($625cm^{-1}$), and random coil ($660cm^{-1}$) specific peaks. Wound healing effect in vitro was observed by cytoslective wound healing kit. Therefore, regenerated Antheraea pernyi silk sponges might be used as promising wound dressing materials.

Inhibition of Human Neutrophil Elastase by NSAIDs and Inhibitors, and Molecular Pharmacological Mechanism of the Inhibition (비스테로이드성 항염증제와 효소 억제제에 의한 사람 중성구 Elastase의 활성도 억제 및 분자약리학적 기전)

  • Kang, Koo-Il;Kim, Woo-Mi;Hong, In-Sik;Lee, Moo-Sang
    • The Korean Journal of Pharmacology
    • /
    • v.32 no.3
    • /
    • pp.425-431
    • /
    • 1996
  • Human neutrophil elastases (HNElastase, EC 3.4.21.37), a causative factor of inflammatory diseases, are regulated by plasma proteinase inhibitors, alpha-proteinase inhibitor and ${\alpha}_2-macroglobulin$. Under certain pathological conditions, however, released enzymes or abnormal function of inhibitors may cause various inflammatory disease. NSAIDs have been clinically applied for treatment of inflammatory diseases. Inhibition of cyclooxygenase is a known mechanism of action of NSAIDs in the treatment of inflammatory disease. In in vitro experiments, HNElastase was inhibited by naproxen, phenylbutazone, and oxyphenbutazone, but ibuprofen, ketoprofen, aspirin, salicylic acid, and tolmetin did not inhibit elastase. HNElastase was also inhibited by chelating agents, EDTA & EGTA, and tetracyclines. Removal of divalent metal ions by EDTA caused inhibition of elastase, and reconstitution of the metal ions recovered the enzyme activity to a certain level. Frequencies and contours in the Raman spectra of various conditions of human neutrophil elastase undergo drastic changes upon partial removal and/or reconstitution of calcium and zinc ions. The metal ion content dependent activities and change of the contour of the Raman spectrogram suggest us that the mechanism of action of a chelator or chelator-like agents on neutrophil elastase may be related to the conformational change at/or near the active site, especially -C=O radical or -COOH radical.

  • PDF

Development of Two-Step Temperature Process to Modulate the Physicochemical Properties of β-lactoglobulin Nanoparticles

  • Ha, Ho-Kyung;Nam, Gyeong-Won;Khang, Dongwoo;Park, Sung Jean;Lee, Mee-Ryung;Lee, Won-Jae
    • Food Science of Animal Resources
    • /
    • v.37 no.1
    • /
    • pp.123-133
    • /
    • 2017
  • The development of a new manufacturing process, a two-step temperature treatment, to modulate the physicochemical properties of nanoparticles including the size is critical. This is because its physicochemical properties can be key factors affecting the cellular uptake and the bioavailability of bioactive compounds encapsulated in nanoparticles. The aims of this study were to produce (beta-lactoglobulin) ${\beta}-lg$ nanoparticles and to understand how two-step temperature treatment could affect the formation and physicochemical properties of ${\beta}-lg$ nanoparticles. The morphological and physicochemical properties of ${\beta}-lg$ nanoparticles were determined using atomic force microscopy and a particle size analyzer, respectively. Circular dichroism spectroscopy was used to investigate the secondary structure of ${\beta}-lg$. The surface hydrophobicity and free thiol groups of ${\beta}-lg$ were increased with a decrease in sub-ambient temperature and an increase in mild heat temperature. As sub-ambient temperature was decreased, a decrease in ${\alpha}-helical$ content and an increase in ${\beta}-sheet$ content were observed. The two-step temperature treatment firstly involved a sub-ambient temperature treatment from 5 to $20^{\circ}C$ for 30 min, followed secondly by a mild heat temperature treatment from 55 to $75^{\circ}C$ for 10 min. This resulted in the production of spherically-shaped particles with a size ranging from 61 to 214 nm. Two-way ANOVA exhibited the finding that both sub-ambient and mild heat temperature significantly (p<0.0001) affected the size of nanoparticles. Zeta-potential values of ${\beta}-lg$ nanoparticles were reduced with increasing mild heat temperature. In conclusion, two-step temperature treatment was shown to play an important role in the manufacturing process - both due to its inducement of the conformational changes of ${\beta}-lg$ during nanoparticle formation, and due to its modulation of the physicochemical properties of ${\beta}-lg$ nanoparticles.