• 제목/요약/키워드: Confocal system

검색결과 178건 처리시간 0.025초

Nonstructural Protein of Severe Fever with Thrombocytopenia Syndrome Phlebovirus Inhibits TBK1 to Evade Interferon-Mediated Response

  • Lee, Jae Kyung;Shin, Ok Sarah
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권2호
    • /
    • pp.226-232
    • /
    • 2021
  • Severe fever with thrombocytopenia syndrome virus (SFTSV) is an emerging phlebovirus of the Phenuiviridae family that has been circulating in the following Asian countries: Vietnam, Myanmar, Taiwan, China, Japan, and South Korea. Despite the increasing infection rates and relatively high mortality rate, there is limited information available regarding SFTSV pathogenesis. In addition, there are currently no vaccines or effective antiviral treatments available. Previous reports have shown that SFTSV suppresses the host immune response and its nonstructural proteins (NSs) function as an antagonist of type I interferon (IFN), whose induction is an essential part of the host defense system against viral infections. Given that SFTSV NSs suppress the innate immune response by inhibiting type I IFN, we investigated the mechanism utilized by SFTSV NSs to evade IFNmediated response. Our co-immunoprecipitation data suggest the interactions between NSs and retinoic acid inducible gene-I (RIG-I) or TANK binding kinase 1 (TBK1). Furthermore, confocal analysis indicates the ability of NSs to sequester RIG-I and related downstream molecules in the cytoplasmic structures called inclusion bodies (IBs). NSs are also capable of inhibiting TBK1-interferon regulatory factor 3 (IRF3) interaction, and therefore prevent the phosphorylation and nuclear translocation of IRF3 for the induction of type I IFN. The ability of SFTSV NSs to interact with and sequester TBK1 and IRF3 in IBs demonstrate an effective yet unique method utilized by SFTSV to evade and suppress host immunity.

Measuring Glutathione Regeneration Capacity in Stem Cells

  • Jihye Kim;Yi-Xi Gong;Eui Man Jeong
    • International Journal of Stem Cells
    • /
    • 제16권3호
    • /
    • pp.356-362
    • /
    • 2023
  • Glutathione (GSH) is a chief cellular antioxidant, affecting stem cell functions. The cellular GSH level is dynamically altered by the redox buffering system and transcription factors, including NRF2. Additionally, GSH is differentially regulated in each organelle. We previously reported a protocol for monitoring the real-time GSH levels in live stem cells using the reversible GSH sensor FreSHtracer. However, GSH-based stem cell analysis needs be comprehensive and organelle-specific. Hence, in this study, we demonstrate a detailed protocol to measure the GSH regeneration capacity (GRC) in living stem cells by measuring the intensities of the FreSHtracer and the mitochondrial GSH sensor MitoFreSHtracer using a high-content screening confocal microscope. This protocol typically analyses the GRC in approximately 4 h following the seeding of the cells onto plates. This protocol is simple and quantitative. With some minor modifications, it can be employed flexibly to measure the GRC for the whole-cell area or just the mitochondria in all adherent mammalian stem cells.

레이저 스펙클 이미징 기법을 이용한 피부 조직의 깊이 방향 비침습적 온도 측정 (Noninvasive Depthwise Temperature Measurement in Skin Tissue Using Laser Speckle Imaging Technique)

  • 자키르임란;노에미코레아;김중경
    • 한국가시화정보학회지
    • /
    • 제22권2호
    • /
    • pp.74-81
    • /
    • 2024
  • Accurate tissue temperature monitoring during clinical procedures, such as laser therapy or surgery, is crucial for ensuring patient safety and treatment efficacy. Noninvasive techniques are essential to prevent tissue disturbance while providing real-time temperature data. However, current methods often struggle to accurately measure temperature at various depths within the skin, which is essential to avoid damage to surrounding healthy tissues due to excessive heat. In response to this challenge, we developed a confocal imaging system that utilizes the laser speckle imaging (LSI) technique for precise depthwise temperature monitoring. LSI uses laser light scattering to capture subtle changes in speckle patterns on the skin's surface due to temperature fluctuations within the tissue. By analyzing these changes, LSI enables accurate depth-resolved temperature measurements. This technique enhances the precision and safety of medical procedures, offering significant potential for broader clinical applications, improved patient outcomes, and better thermal management during interventions.

Autophagy-related protein LC3 and Beclin-1 in the first trimester of pregnancy

  • Chifenti, Barbara;Locci, Maria Teresa;Lazzeri, Gloria;Guagnozzi, Mariangela;Dinucci, Dino;Chiellini, Federica;Filice, Maria Elena;Salerno, Maria Giovanna;Battini, Lorella
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제40권1호
    • /
    • pp.33-37
    • /
    • 2013
  • Autophagy is a degradation process that acts in response to environmental stressors. Recently, autophagy has been detected in normal term, preeclamptic and intrauterine growth-restricted placentas. The object of this work was to investigate the presence of autophagy in first trimester voluntary interruption of pregnancy placental villi by the expression of autophagy-related proteins, light chain 3 (LC3), and Beclin-1. In first trimester placental villi laser scanning confocal microscopy (LSCM) analysis revealed LC3 and Beclin-1 immunoreactivity prevalently located in villous cytotrophoblasts. Using LSCM, LC3, and Beclin-1 were localized to the cytoplasm of the trophoblast layer in human full-term placentas. Beclin-1 expression and LC3 activation were confirmed by western blotting. These data emphasize that autophagy activation is different among cytotrophoblasts and syncytiotrophoblasts depending on the gestational age and thus we speculate that autophagy might play a prosurvival role throughout human pregnancy.

Novel Bacterial Surface Display System Based on the Escherichia coli Protein MipA

  • Han, Mee-Jung
    • Journal of Microbiology and Biotechnology
    • /
    • 제30권7호
    • /
    • pp.1097-1103
    • /
    • 2020
  • Bacterial surface display systems have been developed for various applications in biotechnology and industry. Particularly, the discovery and design of anchoring motifs is highly important for the successful display of a target protein or peptide on the surface of bacteria. In this study, an efficient display system on Escherichia coli was developed using novel anchoring motifs designed from the E. coli mipA gene. Using the C-terminal fusion system of an industrial enzyme, Pseudomonas fluorescens lipase, six possible fusion sites, V140, V176, K179, V226, V232, and K234, which were truncated from the C-terminal end of the mipA gene (MV140, MV176, MV179, MV226, MV232, and MV234) were examined. The whole-cell lipase activities showed that MV140 was the best among the six anchoring motifs. Furthermore, the lipase activity obtained using MV140 as the anchoring motif was approximately 20-fold higher than that of the previous anchoring motifs FadL and OprF but slightly higher than that of YiaTR232. Western blotting and confocal microscopy further confirmed the localization of the fusion lipase displayed on the E. coli surface using the truncated MV140. Additionally the MV140 motif could be used for successfully displaying another industrial enzyme, α-amylase from Bacillus subtilis. These results showed that the fusion proteins using the MV140 motif had notably high enzyme activities and did not exert any adverse effects on either cell growth or outer membrane integrity. Thus, this study shows that MipA can be used as a novel anchoring motif for more efficient bacterial surface display in the biotechnological and industrial fields.

Dysregulation of Cannabinoid CB1 Receptor Expression in Subcutaneous Adipocytes of Obese Individuals

  • Lee, Yong-Ho;Tharp, William G.;Dixon, Anne E.;Spaulding, Laurie;Trost, Susanne;Nair, Saraswathy;Permana, Paska A.;Pratley, Ridhard E.
    • Animal cells and systems
    • /
    • 제13권4호
    • /
    • pp.371-379
    • /
    • 2009
  • The endocannabinoid system (ECS) plays a key role in the regulation of appetite, body weight and metabolism. We undertook the present study to further clarify the regulation of the cannabinoid CB1 receptor (CB1, CNR1) in human adipose tissue in obesity. CB1 receptor mRNA expression was ~1.6-fold (p<0.004) and 1.9-fold higher (P<0.05) in subcutaneous adipocytes from obese compared to non-obese subjects in microarray and quantitative real-time PCR studies, respectively. Higher CB1 receptor mRNA expression levels in both adipose tissue (~1.2 fold, P<0.05) and adipocytes (~2 fold, P<0.01) were observed in samples from visceral compared to subcutaneous depots collected from 22 obese individuals. Immunofluorescence confocal microscopy demonstrated the presence of CB1 receptor on adipocytes and also adipose tissue macrophages. These data indicate that adipocyte CB1 receptor is up-regulated in human obesity and visceral adipose tissue and also suggest a potential role for the ECS in modulating immune/inflammation as well as fat metabolism in adipose tissue.

Littman 및 Littrow 타입 파장가변 반도체 레이저의 제작에 관한 연구 (A Study on the Construction of Littman and Littrow Type Tunable Diode Laser Systems)

  • 백운식
    • 한국광학회지
    • /
    • 제17권3호
    • /
    • pp.273-277
    • /
    • 2006
  • 홀버닝 광메모리의 광원으로서 상용 반도체 레이저 다이오드에 Littman형 및 고정방향 Littrow형 외부공진기를 결합하여 파장가변 레이저 다이오드 시스템을 제작하고 성능을 비교 분석하였다. 두 형태의 파장가변 레이저 다이오드 시스템 모두 0차 출력광은 단일종모드로 동작하며 CFP(Confocal Fabry-Perot)의 분해능인 9MHz이내의 선폭을 예상할 수 있었으며 다이오드 구동전류 140mA 및 동작 온도 $25^{\circ}C$의 조건하에서 거울 및 회절격자를 수동나사로 회전시키는 성긴 튜닝시 Littman형은 5.375nm, 고정방향 Littrow형은 13.65 nm이상의 파장가변 범위를 보였고 PZT (Piezoelectric Transducer)에 200Hz의 톱니파 전압을 인가해서 거울을 회전시키는 미세 튜닝 시 두 형태 모두 0.042nm의 범위 내에서 연속적인 파장가변이 가능하였다. 특히 고정방향 Littrow형 외부공진기는 출력광의 방향이 바뀌는 기존의 단점을 보강하였으며, 또한 외부공진기의 길이에 따른 최대파장가변 범위를 측정하였다.

형광상관분광법을 이용한 광세기에 따른 유효 초점 부피 변화에 대한 연구 (Study on the Effective Focal Volume Change due to Light Intensity Using Fluorescence Correlation Spectroscopy)

  • 정찬배;이재란;김석원
    • 한국광학회지
    • /
    • 제24권2호
    • /
    • pp.71-76
    • /
    • 2013
  • 형광상관분광법을 이용하여 광세기에 따른 공초점 시스템의 유효 초점 부피의 변화를 분석하였다. 형광상관분광장치는 632.8 nm 파장의 He-Ne 레이저에 맞춰서 실험실에서 자체 제작하였고, 시료 또한 레이저 파장에 적합한 두 종류의 시료 AlexaFluor647과 quantum dot 655를 사용하였다. 각 시료에 대해 광원의 세기를 1~50 ${\mu}W$ 범위내에서 변화시켜가며 얻어진 상관함수를 비교 분석하였다. 10 ${\mu}W$ 이하의 약한 광 세기에서는 세기 변화에 따라 입자수와 확산시간이 증가하는 것을 통해 초점 영역의 반지름이 선형적으로 증가하는 결과를 보였다. 반면 10~15 ${\mu}W$ 이상에서는 입자의 수와 확산 시간의 증가율은 감소하였지만 미세하게 계속해서 증가하는 결과를 보였고, 이 결과를 통해 초점영역의 반지름 역시 증가율은 감소하였지만 미세하게 증가한 것을 알 수 있었다.

Encapsulation of Lactobacillus rhamnosus GG Using Milk Protein-Based Delivery Systems: Effects of Reaction Temperature and Holding Time on Their Physicochemical and Functional Properties

  • Ayu, Istifiani Lola;Ha, Ho-Kyung;Yang, Dong-Hun;Lee, Won-Jae;Lee, Mee-Ryung
    • 한국축산식품학회지
    • /
    • 제41권5호
    • /
    • pp.894-904
    • /
    • 2021
  • Microencapsulation is a protective process for materials that are sensitive to harsh conditions encounted during food manufacture and storage. The objectives of this research were to manufacture a milk protein-based delivery system (MPDS) containing Lactobacillus rhamnosus GG (LGG) using skim milk powder and to investigate the effects of manufacturing variables, such as reaction temerpature and holding time, on the physiccohemical properties of MPDS and viability of LGG under dairy food processing and storage conditions. MPDS was prepared using chymosin at varing reaction temperatures from 25℃ to 40℃ for 10 min and holding times from 5 to 30 min at 25℃. The morphological and physicochemical properties of MPDS were evaluated using a confocal laser scanning microscope and a particle size analyzer, respectively. The number of viable cells were determined using the standard plate method. Spherical-shaped MPDS particles were successfully manufactured. The particle size of MPDS was increased with a decrease in reaction temperature and an increase in holding time. As reaction temperature and holding time were increased, the encapsulation efficiency of LGG in MPDS was increased. During pasteurization, the use of MPDS resulted in an increase in the LGG viability. The encapsulation of LGG in MPDS led to an increase in the viability of LGG in simulated gastric fluid. In addition, the LGG viability was enhanced with an increase in reaction temperature and holding time. In conclusions, the encapsulation of LGG in MPDS could be an effective way of improving the viability of LGG during pasturization process in various foods.

오일 등급에 따른 트라이볼로지 특성의 관한 실험적 고찰 (Experimental Study of Tribological Properties According to Oil Grade)

  • 이종호;서국진;황윤후;한재호;김대은
    • Tribology and Lubricants
    • /
    • 제37권6호
    • /
    • pp.246-252
    • /
    • 2021
  • Among the engine components of an internal combustion engine, the valve train is a series of systems that supply intake gas to the combustion chamber and operate intake and exhaust valves that discharge exhaust gas. If excessive wear occurs in the valve train system, the suction and exhaust valves do not open and close on time, which leads to abnormal combustion and exhaust gas. In this study, we conduct experiments and analyses on friction and wear characteristics of the valve train system. Moreover, we experimentally study the correlation between the pinball and pinball cap on engine oil lubrication, friction experiment, wear amount analysis, and surface analysis. Specifically, we experiment using Ball on reciprocating tribo-tester and apply commercial engine oil sold on the market engine oil. We construct the experimental conditions for each new oil and oil. Accordingly, the completed specimen was subjected to a confocal microscope to check the wear volume, observe the surface of the specimen, and confirm the elemental components using a scanning microscope (SEM) and an energy dispersion X-ray spectrometer (EDS). Through this experiment, we analyze the friction and wear characteristics of valve train components according to engine oil grade, and the obtained data serve as an effective engine oil management method.