• Title/Summary/Keyword: Confocal system

Search Result 178, Processing Time 0.026 seconds

대칭 및 비대칭 binary filter가 수차를 포함한 광학계의 축상 GAIN에 미치는 영향

  • 최기준;정창섭;심상현
    • Korean Journal of Optics and Photonics
    • /
    • v.12 no.3
    • /
    • pp.165-171
    • /
    • 2001
  • We discuss the influence of annular binary filters on the axial PSF of imaging systems which are apodized by a radiallysymmetric filter and have spherical aberration and coma. In this paper we consider a whole family of annular binary fIlters in two cases. First, the binary filters are composed of two transparent annuli of the same area. Second, the binary filters are composed of a central clear circle and a concentric annular aperture with area bigger than that of the inner circle. In order to investigate the influence of the proposed filters on the axial PSF, we may use the axial resolution gains, which evaluate in terms of the FWHM of the intensity in the focal region of an apodized imaging system in comparison with that corresponding to a nonapodized one. We evaluate the PSF for the conventional and confocal systems having an aberration. ation.

  • PDF

Tribological approach for the analysis of the pedestrain slipping accident II

  • Kim, Inju
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1996.04a
    • /
    • pp.662-666
    • /
    • 1996
  • The variations of the surface topographical parameters for the analysis of the pedestrian slip and fall accidents during the sliding friction between the specially prepared floor specimens and three working shoes were investigated. The profile ordinate data for each flooring specimen were obtained at 1.1 .mu.m intervals using a laser scanning confocal microscope system along to the direction of sliding. A number of surface roughness parameters, that is, the centre line average (c.l.a.) and root mean square (r.m.s.) roughness, maximum height (Rtm), maximum mean peak height (Rpm), maximum mean depth (Rvm), and average asperity slope were calculated using a computer program and compared with the dynamic friction results. The analysis showed that the surface parameters undergo marked variations during the sliding process, but the variations were statistically significant. It was found that amongst various surface parameters, the maximum depth (Rvm) and the average asperity slope of the asperities were the biggest variation during the sliding proceeding. This result confirms the previous study and may suggests a new approach to monitoring the flooring environments with their service as the effort to reduce the pedestrain slip accident.

  • PDF

Characterization of Microfluidic Channels using DVD Pick-up Fluorescent Scanner (광 픽업 방식 형광스캐너를 이용한 미소유체 특성 분석)

  • Yim, Vit;Kim, Jae-Hyun;Lee, Seung-Yop;Park, Jung-Yul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.12
    • /
    • pp.1102-1106
    • /
    • 2008
  • Microfluidics deals with the behavior, precise control and manipulation of fluids at a micro scale. It has become increasingly prevalent in various applications such as biomedical applications (diagnostics, therapeutics, and cell/tissue engineering), inkjet head, and fuel cells etc. The issue of inspection and characterization of microfluidics has emerged as a major consideration in design, fabrication, and detection of microfluidic devices. In this paper, we characterize a diffusion based mixing in Y-microchannel using a fluorescent optical scanner based on a DVD pick-up module, which is widely used in optical storages. Using fluorescent dye, we measure the fluorescent intensity that represents the mixing patterns in Y-microchannel. We also compare these experimental results with computational fluid dynamics (CFD) simulation ones. It is shown that the proposed optical scanner can be used as an alternative measurement system with high performance and cost-effectiveness, compared to conventional optical tools such as epifluorescent microscopes using high resolution CCD camera and confocal microscopes with photomultiplier (PMT) detectors.

Long-term stabilization of optical feedback of a resonant external cavity coupled semiconductor laser (공진형 외부 캐비티 부착 반도체 레이저의 광피드백 장기 안정화)

  • 신철호
    • Korean Journal of Optics and Photonics
    • /
    • v.9 no.2
    • /
    • pp.96-99
    • /
    • 1998
  • In this study, a novel long term stabilization method of optical feedback for the resonant cavity coupled semiconductor lasers is proposed, and its utility was shown experimentally. The proposed method is realized by using the pahse discriminator of optical feedback with high gain. The phase discriminating signal was obtained by the polarization spectroscopic technique using reflection light from the external reflector, which is a confocal Fabry-Perot cavity. Experimental result shows that stable control state can be maintained up to 20 hours. The period can be increased by reducing size of the system and/or fixing position stably of optical parts used, which were arranged on an optical table by using magnetic bases in this experiment. The proposed long-term stabilization method of optical feedack of a resonant external cavity coupled semiconductor laser is very useful for the field of high sensitivity measurement, and for the use in the laboratory level in particular.

  • PDF

Single-walled Carbon Nanotube-triethylammonium Ionic Liquid as a New Catalytic System for Michael Reaction

  • Attri, Pankaj;Choi, Eun Ha;Kwon, Gi-Chung;Bhatia, Rohit;Gaur, Jitender;Arora, Bharti;Kim, In Tae
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.10
    • /
    • pp.3035-3040
    • /
    • 2014
  • A new efficient catalytic method for aza/thia-Michael addition reactions of amines/thiols with higher product yields has been developed. Combining single-walled carbon nanotubes (SWCNT) with triethylammonium hydrogen phosphate (TEAP) ionic liquid (IL) can work as a catalyst. We utilized Raman spectroscopy to gain insight into the interactions between IL and SWCNT. The interactions between SWCNT with TEAP were confirmed by the increasing intensity ratios and spectral shift in wavelength of the Raman D and G bands of SWCNT. Further, the morphology of the resulting composite materials of TEAP and SWCNT was determined by using scanning electron microscopy (SEM). Higher product yield in reduced reaction time is the key advantage of using bucky gel as a catalyst for Michael reaction.

Multi-dimensional analyses of plant chromosomes and genomes.

  • Fukui, Kiichi;Ohmido, Nobuko;Wako, Toshiyuki
    • Proceedings of the Botanical Society of Korea Conference
    • /
    • 1998.07a
    • /
    • pp.61-70
    • /
    • 1998
  • Genome and chromosome analyses in plants using fluorescence in situ hybridization (FISH) and immuno-staining (IMS) methods are reviewed by presenting the recent results obtained by the Chromosome Link, a group of chromosome and genome researchers. FISH is now effective to detect unique nucleotide sequences with 153 bp on the extended DNA fibers. Genomic in situ hybridization (GISH) also allows painting plant chromosomes of different genomes. GISH is quite effective to detect the genomic differentiation in the individual chromosomes within a nucleus. Three dimensional (3D) analyses are now available by confocal microscopy and a deconvolution system. These techniques are invaluable to visualize both the structural and functional dynamics within a nucleus. 3D-FISH revealed the spatial differentiation of different genomees within a nucleus. 3D-FISH also proved structural partition of centromeric and telomeric domains within a barely nucleus. The dynamic acetylation of histone H4 at the specific regions of a genome during a cell cycle is also analyzed using 3D-IMS. It is anticipated that these methods will provide us powerful tools to understand the structural and functional significance of plant chromosomes and genomes.

  • PDF

Synthesis of a Novel Near-Infrared Fluorescent Dye: Applications for Fluorescence Imaging in Living Cells and Animals

  • Chen, Tongbin;Lai, Yijun;Huang, Suisheng
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.10
    • /
    • pp.2937-2941
    • /
    • 2013
  • Fluorescence imaging is considered as one of the most powerful techniques for monitoring biomolecule activities in living systems. Near-infrared (NIR) light is advantageous for minimum photodamage, deep tissue penetration, and minimum background autofluorescence interference. Herein, we have developed a new NIR fluorescent dye, namely, RB-1, based on the Rhodamine B scaffold. RB-1 exhibits excellent photophysical properties including large absorption extinction coefficients, high fluorescence quantum yields, and high photostability. In particular, RB-1 displays both absorption and emission in the NIR region of the "biological window" (650-900 nm) for imaging in biological samples. RB-1 shows absorption maximum at 614 nm (500-725 nm) and emission maximum at 712 nm (650-825 nm) in ethanol, which is superior to those of traditional rhodamine B in the selected spectral region. Furthermore, applications of RB-1 for fluorescence imaging in living cells and small animals were investigated using confocal fluorescence microscopy and in vivo imaging system with a high signal-to-noise ratio (SNR = 10.1).

3D Light-Sheet Fluorescence Microscopy of Cranial Neurons and Vasculature during Zebrafish Embryogenesis

  • Park, Ok Kyu;Kwak, Jina;Jung, Yoo Jung;Kim, Young Ho;Hong, Hyun-Seok;Hwang, Byung Joon;Kwon, Seung-Hae;Kee, Yun
    • Molecules and Cells
    • /
    • v.38 no.11
    • /
    • pp.975-981
    • /
    • 2015
  • Precise 3D spatial mapping of cells and their connections within living tissues is required to fully understand developmental processes and neural activities. Zebrafish embryos are relatively small and optically transparent, making them the vertebrate model of choice for live in vivo imaging. However, embryonic brains cannot be imaged in their entirety by confocal or two-photon microscopy due to limitations in optical range and scanning speed. Here, we use light-sheet fluorescence microscopy to overcome these limitations and image the entire head of live transgenic zebrafish embryos. We simultaneously imaged cranial neurons and blood vessels during embryogenesis, generating comprehensive 3D maps that provide insight into the coordinated morphogenesis of the nervous system and vasculature during early development. In addition, blood cells circulating through the entire head, vagal and cardiac vasculature were also visualized at high resolution in a 3D movie. These data provide the foundation for the construction of a complete 4D atlas of zebrafish embryogenesis and neural activity.

Comparison of Ablation Characteristics of Carbon Nanotube reinforced Hybrid Al2O3 by using Ultrashort Pulse Laser (순수 알루미나와 탄소나노튜브 강화 알루미나 복합체의 극초단 펄스레이저 가공특성 비교)

  • Lee, Jun-Young;Yoon, Ji-Wook;Kang, Myung-Chang;Cho, Sung-Hak
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.6
    • /
    • pp.23-29
    • /
    • 2013
  • In this paper, pure $I_{ph}$ and hybrid carbon nanotube reinforced $I_{ph}$ were sintered using the SPS(spark plasma sintering) method for high densification. A nanosecond laser (${\lambda}=1063nm$, ${\tau}P=10ns$) and a femtosecond laser (${\lambda}=1027nm$, ${\tau}P=380fs$) were installed on an optical system for the micromachining test. The ablation characteristics of the pure $I_{ph}$ and CNT/$I_{ph}$ composites, such as thermal effect and ablation depth, were investigated using FE-SEM and a confocal microscope device. Laser machining results for the two mating materials showed improved performances: CNT/$I_{ph}$ composites showed good surface morphology of hole drilling without a melting zone due to the composites' high thermal properties; also, the ablated depth of CNT/$I_{ph}$ was higher than that of pure $I_{ph}$.

Evaluation of Volumetric Texture Features for Computerized Cell Nuclei Grading

  • Kim, Tae-Yun;Choi, Hyun-Ju;Choi, Heung-Kook
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.12
    • /
    • pp.1635-1648
    • /
    • 2008
  • The extraction of important features in cancer cell image analysis is a key process in grading renal cell carcinoma. In this study, we applied three-dimensional (3D) texture feature extraction methods to cell nuclei images and evaluated the validity of them for computerized cell nuclei grading. Individual images of 2,423 cell nuclei were extracted from 80 renal cell carcinomas (RCCs) using confocal laser scanning microscopy (CLSM). First, we applied the 3D texture mapping method to render the volume of entire tissue sections. Then, we determined the chromatin texture quantitatively by calculating 3D gray-level co-occurrence matrices (3D GLCM) and 3D run length matrices (3D GLRLM). Finally, to demonstrate the suitability of 3D texture features for grading, we performed a discriminant analysis. In addition, we conducted a principal component analysis to obtain optimized texture features. Automatic grading of cell nuclei using 3D texture features had an accuracy of 78.30%. Combining 3D textural and 3D morphological features improved the accuracy to 82.19%. As a comparative study, we also performed a stepwise feature selection. Using the 4 optimized features, we could obtain more improved accuracy of 84.32%. Three dimensional texture features have potential for use as fundamental elements in developing a new nuclear grading system with accurate diagnosis and predicting prognosis.

  • PDF