• Title/Summary/Keyword: Confocal Microscope

Search Result 315, Processing Time 0.035 seconds

Generation of myelination with neural cell cultures in rats and suppression of myelination by infection of sindbis virus (쥐의 신경세포 배양에 의한 수초 발생과 sindbis 바이러스 감염에 의한 수초 억제)

  • Sa, Young-Hee;Kim, Hyun Joo;Lee, Bae Hwan;Hong, Seong-Karp
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2019.05a
    • /
    • pp.528-532
    • /
    • 2019
  • The dorsal root ganglion (DRG) was isolated from mouse embryos and Schwann cells and neuronal cells were cultured in vitro. The neurons and Schwann cells were cultured separately and the two kinds of cells were cultured together for three weeks. Generation of myelination was confirmed by transmission electron microscope and confocal microscope using a myelinaion protein, myelin protein zero (MPZ) antibody. The sindbis virus was infected for three days in the myelinated culture cells and then demyelination was carried out. The process of demyelination was also confirmed by transmission electron microscopy and confocal microscopy using myelin protein zero (MPZ) antibody. The study was supported by a Basic Research Program through the National Research Foundation (NRF) funded by the Ministry of Science and Technology, ICT and Future Plans (NRF-2016R1A2B4016552 and 2017R1A2B3005753).

  • PDF

Analysis of Rock Surface Roughness and Chemical Species Generation by Freeze-Thaw Experiments (동결융해 실험을 통한 암석 표면 거칠기 및 화학종 생성에 관한 분석)

  • Choi, Junghae
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.35 no.3
    • /
    • pp.299-311
    • /
    • 2022
  • Rocks exposed to the surface are subject to long-term weathering, and such effects weaken their engineering stability. Especially as weathering progresses, the surface of rocks will be changed by weathering, and such surface changes will affect the engineering safety of the rock mass. In addition, the chemical species produced in the weathered rock have a direct effect on the surrounding environment or on the structure. In areas where rocks are exposed, such as mining areas, chemical species produced by weathering can have a serious impact on the surrounding natural environment. In this study, accelerated weathering experiments using freeze/thaw system were conducted on rocks that had already been weathered and fresh rocks, and surface changes of each rock were observed with confocal laser scanning microscope (CLSM), and chemical species were analyzed using IC/ICP-MS. As the weathering progressed, the surface roughness decreased, and the amount of chemical species produced increased. The results of this study can be used as basic data for evaluating engineering/environmental safety in areas where rocks are exposed.

Quantitative Assessment of Wear Characteristics of Cr-based Coating Reinforced with Diamond (다이아몬드 강화 Cr 기반 소재의 정량적 마모 특성 평가)

  • Huynh, Ngoc-Phat;Vu, Nga Linh;Chung, Koo-Hyun
    • Tribology and Lubricants
    • /
    • v.38 no.1
    • /
    • pp.15-21
    • /
    • 2022
  • Diamond reinforced Cr-based coating has been proposed as wear-resistant materials. In this study, the friction and wear characteristics of diamond reinforced Cr-based coating are experimentally assessed. The experiments are performed using a pin-on-reciprocating plate tribo-tester under various normal forces with boundary lubrication. The stainless-steel ball is used as a counter material. Prior to the experiments, mechanical properties such as elastic modulus and hardness are determined using nanoscale instrumented indentation. The hardness of the specimen is further determined using a Vickers hardness tester. The specimens before and after the experiments are carefully observed using a confocal microscope to understand the wear characteristics. In addition, the wear volume and wear rate of the specimens are determined based on the confocal microscope data. The results show that the friction coefficients are 0.096-0.100 under 20-40 N normal forces. Furthermore, the wear rates of the diamond reinforced Cr-based coating and the stainless steel ball under 20-40 N normal forces are found to be 12.8 × 10-8 mm3/(Nm)-15.5 × 10-8 mm3/(Nm) and 1.9 × 10-8 mm3/(Nm)-3.9 × 10-8 mm3/(Nm), respectively. However, the effect of the normal force on wear rates is not clearly observed, which may be associated with the flattening of the ball. The results of the study may be useful for the tribological applicability of diamond reinforced Cr-based coating as wear-resistant materials.

Can Daily-use Lipstick Make Lips More Fresh and Healthy\ulcorner - A New Lipstick Containing $\alpha$-Glucosyl-hesperidin Can Remove the Dull-color from Lips

  • Iwai, I.;Yamashita, T.;Ochiai, N.;Masuda, Y.;Hosokawa, K.;Kohno, Y.
    • Proceedings of the SCSK Conference
    • /
    • 2003.09a
    • /
    • pp.162-177
    • /
    • 2003
  • It has been known that the color of skin reflects the blood flow within. In lips, the capillaries close to the skin surface are numerous; hence lips are redder than the rest of face. However, dermatological research on lips is not as advanced as research on facial or body skin, and little was known about the relationship between relatively dull-colored lips and skin blood flow. The physiological differences between colorful and dull-colored lips were studied by a two-dimensional laser Doppler blood flow analyzer, a spectrometer for the measurement of the degree of oxygen saturation, and a confocal microscope for observing inside lips non-invasively. Dull-colored lips and the corner of lips (dull-colored compared to the center) showed relatively poor blood flow and lower oxygenated hemoglobin. It was found that colorful lips (generally the young) had a blood flow that tended to run straight in parallel with the skin surface. This unique blood-capillary structure can express clear red blood. Those with dull-colored lips had lost this unique structure. Their blood ran perpendicularly from the deep of the skin and down back again into the deep part as like the blood circulation patterns of facial skin. Therefore, the lips of the latter group had fewer blood capillaries near skin surface in the lips than that of the colorful-lips group. A lipstick containing a-glucosyl-hesperidin, which is derived from certain citrus fruits and can enhance blood circulation, was applied for evaluating its effects. Blood flow was increased 30 min after the application. After two weeks of daily application, the lips' condition became noticeably less dull. These findings suggest that the decrease of blood flow in dull-colored lips is caused by the loss of the unique capillary structure and the use of the lipstick to increase blood flow can give a vivid color to lips.

  • PDF

A Novel Method for 3D Surface and Solid Construction Analysis of Fabric Microstructure (직물 미세구조의 3차원 표면 및 솔리드 형성 방법)

  • Lee, Ye-Jin;Lee, Byung-Cheol
    • Korean Journal of Human Ecology
    • /
    • v.21 no.3
    • /
    • pp.539-550
    • /
    • 2012
  • In-depth knowledge of fabric microstructure is essential for understanding clothing comfort since it plays a significant role in heat and mass transfer between the human body and clothing. In this study, a novel method was employed for investigating 3D surfaces and solid construction characteristics of specific fabrics by using a reverse engineering technique. The surface construction data were obtained by a confocal laser scanning microscope and then manipulated by a 3D analysis program. Triangle mesh was used for connecting each 3D point, with clouds and fabric surface characteristics created by rendering techniques. For generating a 3D solid model, determinants of radius of curvature was used. According to the proposed method, actual surface expression of the real fabric was achieved successfully. The results from this methodology can be applied to the detailed analysis of clothing comfort that is highly influenced by the microstructure of the fabric.

Stability Studies of Biodegradable Polymersomes Prepared by Emulsion Solvent Evaporation Method

  • Lee Yu-Han;Chang Jae-Byum;Kim Hong-Kee;Park Tae-Gwan
    • Macromolecular Research
    • /
    • v.14 no.3
    • /
    • pp.359-364
    • /
    • 2006
  • Di-block copolymers composed of two biocompatible polymers, poly(ethylene glycol) and poly(D,L-lactide), were synthesized by ring-opening polymerization for preparing polymer vesicles (polymersomes). Emulsion solvent evaporation method was used to fabricate the polymersomes. Scanning electron microscope (SEM) images confirmed that polymersomes have a hollow structure inside. Confocal laser microscope and optical microscope were also used to verify the hollow structure of polymersomes. Polymersomes having various sizes from several hundred nanometers to a few micrometers were fabricated. The size of the polymersomes could be readily controlled by altering the relative hydrodynamic volume fraction ratio between hydrophilic and hydrophobic blocks in the copolymer structure, and by varying the fabrication methods. They showed greatly enhanced stability with increased molecular weight of PEG. They maintained their physical and chemical structural integrities after repeated cycles of centrifugation/re-dispersion, and even after treatment with surfactants.

Investigation of Friction and Wear Characteristics of Cast Iron Material Under Various Conditions (다양한 조건에 따른 주철 소재의 마찰/마모 특성에 관한 연구)

  • Joo, Ji-Hoon;Kim, Chang-Lae;Nemati, Narguess;Oh, Jeong-Taek;Kim, Dae-Eun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.8
    • /
    • pp.765-772
    • /
    • 2015
  • Cast iron is widely used in fields such as the transport and heavy industries. For parts where contact damage is expected to occur, it is necessary to understand the friction and wear characteristics of cast iron. In this study, we use cast iron plates as the specimens to investigate their friction and wear characteristics. We perform various experiments using a reciprocating type tribotester. We assess the frictional characteristics by analyzing the friction coefficient values that were obtained during the sliding tests. We observe the wear surfaces of cast iron and steel balls using a scanning electron microscope, confocal microscope, and 3d profiler. We investigate the friction and wear characteristics of cast iron by injecting sand and alumina particles having various sizes. Furthermore, we estimate the effect of temperature on the friction and wear characteristics. The results obtained are expected to aid in the understanding of the tribological characteristics of cast iron in industry.

Subcellular Location of Spodpotera Cell-expressed Human HepG2-type Glucose Transport Protein

  • Lee, Chong-Kee
    • Biomedical Science Letters
    • /
    • v.18 no.2
    • /
    • pp.160-164
    • /
    • 2012
  • The baculovirus/insect cell expression system is of great value for the large-scale production of normal and mutant mammalian passive glucose-transport proteins heterologously for structural and functional studies. In most mammalian cells that express HepG2, this transporter isoform is predominantly located at the cell surface. However, it had been reported that heterologous expression of other membrane proteins using the baculovirus system induced highly vacuolated cytoplasmic membranes. Therefore, how a cell responds to the synthesis of large amounts of a glycoprotein could be an interesting area for investigation. In order to examine the subcellular location of the human HepG2 transport proteins when expressed in insect cells, immunofluorescence studies were carried out. Insect cells were infected with the recombinant baculovirus AcNPVHIS-GT or with wild-type virus at a MOI of 5, or were not exposed to viral infection. A high level of fluorescence displayed in cells infected with the recombinant virus indicated that transporters are expressed abundantly and present on the surface of infected Sf21 cells. The evidence for the specificity of the immunostaining was strengthened by the negative results shown in the negative controls. Distribution of the transporter protein expressed in insect cells was further revealed by making a series of optical sections through an AcNPVHIS-GT-infected cell using a confocal microscope, which permits optical sectioning of cell sample. These sections displayed intense cytoplasmic immunofluorecence surrounding the region occupied by the enlarged nucleus, indicating that the expressed protein was present not only at the cell surface but also throughout the cytoplasmic membranous structures.

Wear Characteristics of Metal Ball and Seat for Metal-Seated Ball Valve (금속 볼 밸브의 볼·시트 마멸 특성에 관한 실험적 연구)

  • Bae, Junho;Chung, Koo-Hyun
    • Tribology and Lubricants
    • /
    • v.32 no.1
    • /
    • pp.32-37
    • /
    • 2016
  • The wear characteristics of metal ball and seat in a metal-seated ball valve significantly affect the performances such as leakage and valve torque. In this work, the wear characteristics of metal ball and seat are experimentally investigated. A stainless steel ball and seat with a high corrosion-resistant coating are prepared and a component level test was performed. The hardness and surface roughness of specimens cut from the metal ball and seat are measured before and after the test using a micro-Vickers hardness tester and confocal microscopy, respectively. In order to assess the wear characteristics, the surfaces of the specimens are carefully examined after the test. The confocal microscope data show that the surface roughness values of both the ball and seat increase by a factor of 3-4, which may lead to an increase in valve torque. However, the wear of the seat is found to be more significant than that of the ball. In addition, a comparison of the surfaces of the ball and seat before and after testing revealed that adhesive and abrasive wear are the major wear mechanisms. The results of this study may aid in the design of metal-seated ball valves from the tribological point of view.

CLSM [Confocal Laser Scanning Microscope] Observation of the Surface Roughness of Pressurized Rock Samples During Freeze/Thaw Cycling

  • Kim, Hye-jin;Choi, Junghae;Chae, Byung-gon;Kim, Gyo-won
    • The Journal of Engineering Geology
    • /
    • v.25 no.2
    • /
    • pp.165-178
    • /
    • 2015
  • Physical and chemical weathering degrades rock, affecting its structural properties and thus the stability of stone buildings or other structures. Confocal laser scan microscopy (CLSM) is used here to observe temporal changes in the surface roughness of rock samples under simulated accelerated weathering. Samples were pressurized to 50, 55, or 70 MPa using a pressure frame, and subjected to freeze/thaw cycling controlled by a thermostat. The temperature was cycled from -20℃ to 40℃ and back. After each 20 cycles, CLSM was used to assess the change in surface roughness, and roughness factors were calculated to quantify the progression of the surface condition over time. Variations in cross-section line-roughness parameters and surface-roughness parameters were analyzed for specific parts of the sample surfaces at 5× and 50× magnification. The result reveals that the highest and lowest values of the roughness factors are changed according to elapsed time. Freezing/thawing at high pressure caused larger changes in the roughness factor than at low pressure.