• Title/Summary/Keyword: Confocal Image

Search Result 102, Processing Time 0.028 seconds

Three Dimensional Confocal Imaging and Biomedical Image Analysis (3차원 Confocal Imaging과 생체 영상 분석)

  • Lee, Yim-Kul
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1995 no.11
    • /
    • pp.257-261
    • /
    • 1995
  • Confocal laser scanning microscopy (CLSM)는 기존의 coherent or incoherent microscopic imaging 보다 횡축 방향 (lateral direction)으로 고해상도를 가지며, 층과 층 사이를 구분하는 광축 방향 (axial direction)의 optical sectioning에 의해 샘플의 3D 구조를 고해상도로 영상화함으로써 3D 구조 및 생체 기능 분석을 가능하게 해 준다. 본 논문에서는 CLSM에 의한 3D 영상화 원리와 촛점면 부근에서 얻어지는 광세기 분포, 얻어진 2D slice 영상의 시각화 및 응용에 대해 논의된다.

  • PDF

Measurement of metal materials structure by using the manufactured Scanning Confocal Microscopy (초소형 공초점 현미경의 제작과 금속의 구조 측정)

  • Seo, Myeong-Hee;Kim, Jong-Bae;Kwon, Nam-Ic
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.11
    • /
    • pp.52-57
    • /
    • 2008
  • We demonstrate the operation of an apparatus that we call the laser scanning confocal microscopy. It is valuable tool of the investigations for imaging process. We measured the thin metal structure through the SCM manufacture. Confocal microscopy offers several advantages including shallow depth of field, elimination of out-of-focus glare, and the ability to collect serial optical sections from thick specimens than conventional optical microscope. This research is manufactured of scanning confocal microscopy and after measured of metal materials structure.

Effects of Confocal Filter for Reading of Micro Holographic Data Storage (마이크로 홀로그래픽 저장장치의 공초점 필터의 효과)

  • Min, Cheol-Ki;Kim, Do-Hyung;Park, No-Cheol;Yang, Hyun-Seok;Park, Kyoung-Su;Park, Young-Pil
    • Transactions of the Society of Information Storage Systems
    • /
    • v.6 no.1
    • /
    • pp.25-30
    • /
    • 2010
  • In this paper, we investigate the confocal filter for high quality reading signal of micro holographic data storage system. The confocal filter is used to remove crosstalk effects of adjacent recording-layer by multi-layer multiplexing method. To remove a noise of reading signal, we consider size and geometrical structure of filter. From the obtained results, we present optical characteristics including Fresnel and Fraunhofer diffraction effects. Finally, we propose the optimal confocal filter for good image quality and increased reflection power.

Segmentation of Neuronal Axons in Brainbow Images

  • Kim, Tae-Yun;Kang, Mi-Sun;Kim, Myoung-Hee;Choi, Heung-Kook
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.12
    • /
    • pp.1417-1429
    • /
    • 2012
  • In neuroscientific research, image segmentation is one of the most important processes. The morphology of axons plays an important role for researchers seeking to understand axonal functions and connectivity. In this study, we evaluated the level set segmentation method for neuronal axons in a Brainbow confocal microscopy image. We first obtained a reconstructed image on an x-z plane. Then, for preprocessing, we also applied two methods: anisotropic diffusion filtering and bilateral filtering. Finally, we performed image segmentation using the level set method with three different approaches. The accuracy of segmentation for each case was evaluated in diverse ways. In our experiment, the combination of bilateral filtering with the level set method provided the best result. Consequently, we confirmed reasonable results with our approach; we believe that our method has great potential if successfully combined with other research findings.

Confocal Microscopy Measurement of the Fiber Orientation in Short Fiber Reinforced Plastics

  • Lee, Kwang Seok;Lee, Seok Won;Youn, Jae Ryoun;Kang, Tae Jin;Chung, Kwansoo
    • Fibers and Polymers
    • /
    • v.2 no.1
    • /
    • pp.163-172
    • /
    • 2001
  • To determine three-dimensional fiber orientation states in injection-molded short fiber composites a CLSM (Confocal Laser Scanning Microscope) is used. Since the CLSM optically sections the composites, more than two cross-sections either on or below the surface of the composite can be obtained. Three dimensional fiber orientation states can be determined with geometric parameters of fibers on two parallel cross-sections. For experiment, carbon fiber reinforced polystyrene is examined by the CLSM. Geometric parameters of fibers are measured by image analysis. In order to compactly describe fiber orientation states, orientation tensors are used. Orientation tensors are determined at different positions of the prepared specimen. Three dimensional orientation states are obtained without the difficulty in determining the out-of-plane angles by utilizing images on two parallel planes acquired by the CLSM. Orientation states are different at different positions and show the shell-core structure along the thickness of the specimen.

  • PDF

Research on Reconstruction Technology of Biofilm Surface Based on Image Stacking

  • Zhao, Yuyang;Tao, Xueheng;Lee, Eung-Joo
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.11
    • /
    • pp.1472-1480
    • /
    • 2021
  • Image stacking technique is one of the key techniques for complex surface reconstruction. The process includes sample collection, image processing, algorithm editing, surface reconstruction, and finally reaching reliable conclusions. Since this experiment is based on laser scanning confocal microscope to collect the original contour information of the sample, it is necessary to briefly introduce the relevant principle and operation method of laser scanning confocal microscope. After that, the original image is collected and processed, and the data is expanded by interpolation method. Meanwhile, several methods of surface reconstruction are listed. After comparing the advantages and disadvantages of each method, one-dimensional interpolation and volume rendering are finally used to reconstruct the 3D model. The experimental results show that the final 3d surface modeling is more consistent with the appearance information of the original samples. At the same time, the algorithm is simple and easy to understand, strong operability, and can meet the requirements of surface reconstruction of different types of samples.

Mixing Efficiency Evaluation in Y-channel Micromixer Using LIF Confocal Microscope (LIF 공초점 현미경을 이용한 Y-채널 마이크로믹서의 혼합 효율 평가)

  • Kim, Kyoung-Mok;Shin, Yong-Su;Ahn, Yoo-Min;Lee, Do-Hyung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.2 s.257
    • /
    • pp.159-166
    • /
    • 2007
  • Mixing between two or more reagents is one of important processes in biochemical microfluidics. In efficient micromixer design, it is essential to analyze flow pattern and evaluate mixing efficiency with good precision. In this work, mixing efficiency for Y-channel micromixer is measured by fluorescence intensity using LIF(Laser Induced Fluorescence) Confocal Microscope. The Y-channel micromixers are fabricated with polydimethylsiloxane(PDMS) and those are bonded to glass plate through Plasma bonding. Nile Blue A is injected into the micromixer as a fluorescence dye for measuring of fluorescence intensity by He/Ne laser. For visualization of the flow pattern, dynamic image capturing is carried out using CAM scope. For the comparison with computer simulation, modified SIMPLE algorithm for incompressible flow equation is solved for the same geometry as in the experiment. Throughout the experiments and computer simulation, accurate mixing efficiency evaluation process for a PDMS Y-channel micromixer is established.

Quantification of Melanin Density at Epidermal Basal Layer by Using Confocal Scanning Laser Microscope (CSLM) (Confocal Scanning Laser Microscope (CSLM)을 이용한 피부 기저층 멜라닌 밀도의 정량화)

  • Kim, Dong Hyun;Lee, Sung Ho;Oh, Myoung Jin;Choi, Go Woon;Yang, Woo Chul;Park, Chang Seo
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.40 no.3
    • /
    • pp.259-268
    • /
    • 2014
  • Non-invasive technologies in skin research have enabled to use a live image of living skin without a biopsy or histologic processing of tissue. Confocal scanning laser microscope (CSLM) operated at a near-infrared wavelength of 830 nm allows visualization of inner structure of skin as a non-invasive manner. According to previous researches using CSLM, melanin cap and papillary ring were clearly observed in pigmented areas between stratum basale and papillary dermis. In this study, conversional analysis of CSLM digital images into numerical estimation using scanning probe image processor (SPIP) software was attempted for the first time. It is concluded that a quantification of CSLM images can pave way to expand the field of applications of CSLM.

Image Analysis Algorithm for the Corneal Endothelium

  • Kim Young-Yoon;Kim Beop-Min;Park Hwa-Joon;Im Kang-Bin;Lee Jin-Su;Kim Dong-Youn
    • Journal of Biomedical Engineering Research
    • /
    • v.27 no.3
    • /
    • pp.125-130
    • /
    • 2006
  • The number of the living endothelial cells and the shape of those are very import clinical parameters for the evaluation of the quality of cornea. In this paper, we developed the automated endothelial cell counting and shape analysis algorithm for a confocal microscope. Since, the endothelial images from the confocal microscope has a non-uniform illumination and low contrast between cell boundaries and cell bodies, it is very difficult to segment the cells from the endothelial images. To cope with these difficulties, we proposed the new two stage image processing algorithm. At first stage algorithm, we used a high-pass filter and histogram equalization to compensate the non-uniform brightness pattern and a morphological filter and a watershed method are applied to detect the boundary of cells. From this stage, we could count the number of cells in an endothelial image. At second stage algorithm, we used a Voronoi diagram method to classify the shape of cells. This cell shape analysis and the percent of hexagonal cells are very sensitive in detecting the early endothelium damage. To evaluate the performance of the proposed system, we p개cessed seven endothelial images obtained using a confocal microscope. The proposed system correctly counted 95.5% cells and classified 92.0% of hexagonal cell shapes. This result is better than any others in this research area.

Usability of Multiple Confocal SPECT SYSTEM in the Myocardial Perfusion SPECT Using $^{99m}Tc$ ($^{99m}Tc$을 이용한 심근 관류 SPECT에서 Multiple Confocal SPECT System의 유용성)

  • Shin, Chae-Ho;Pyo, Sung-Jai;Kim, Bong-Su;Cho, Yong-Gyi;Jo, Jin-Woo;Kim, Chang-Ho
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.15 no.2
    • /
    • pp.65-71
    • /
    • 2011
  • Purpose: The recently adopted multiple confocal SPECT SYSTEM (hereinafter called IQ SPECT$^{TM}$) has a high difference from the conventional myocardial perfusion SPECT in the collimator form, image capture method, and image reconstruction method. This study was conducted to compare this novice equipment with the conventional one to design a protocol meeting the IQ SPECT, and also determine the characteristics and usefulness of IQ SPECT. Materials and Methods: 1. For the objects of LEHR (Low energy high resolution) collimator and Multiple confocal collimator, $^{99m}Tc$ 37MBq was put in the acrylic dish then each sensitivity ($cpm/{\mu}Ci$) was measured at the distance of 5 cm, 10 cm, 20 cm, 30 cm, and 40 cm respectively. 2. Based on the sensitivity measure results, IQ SPECT Protocol was designed according to the conventional general myocardial SPECT, then respectively 278 kBq/mL, 7.4 kBq/mL, and 48 kBq/mL of $^{99m}Tc$ were injected into the myocardial and soft tissues and liver site by using the anthropomorphic torso phantom then the myocardial perfusion SPECT was run. 3. For the comparison of FWHMs (Full Width at Half Maximum) resulted from the image reconstruction of LEHR collimator, the FWHMs (mm) were measured with only algorithms changed, in the case of the FBP (Filtered Back projection) method- a reconstruction method of conventional myocardial perfusion SPECT, and the 3D OSEM (Ordered subsets expectation maximization) method of IQ SPECT, by using $^{99m}Tc$ Line source. Results: 1. The values of IQ SPECT collimator sensitivity ($cpm/{\mu}Ci$) were 302, 382, 655, 816, 1178, and those of LEHR collimator were measured as 204, 204, 202, 201, 198, both at the distance of 5 cm, 10 cm, 20 cm, 30 cm, and 40 cm respectively. It was found the difference of sensitivity increases up to 4 times at the distance of 30 cm in the cases of IQ SPECT and LEHR. 2. The myocardial perfusion SPECT Protocol was designed according to the geometric characteristics of IQ SPECT based on the sensitivity results, then the phantom test for the aforesaid protocol was conducted. As a result, it was found the examination time can be reduced 1/4 compared to the past. 3. In the comparison of FWHMs according to the reconstructed algorithm in the FBP method and 3D OSEM method followed after the SEPCT test using a LEHR collimator, the result was obtained that FWHM rose around twice in the 3D OSEM method. Conclusion : The IQ SPECT uses the Multiple confocal collimator for the myocardial perfusion SPECT to enhance the sensitivity and also reduces examination time and contributes to improvement of visual screen quality through the myocardial-specific geometric image capture method and image reconstruction method. Due to such benefits, it is expected patients will receive more comfortable and more accurate examinations and it is considered a further study is required using additional clinical materials.

  • PDF