• Title/Summary/Keyword: Configuration factors

Search Result 537, Processing Time 0.031 seconds

A Study on the Impact Factors for Innovation Cluster: A Case of the Pangyo Techno Valley (혁신클러스터의 성과 영향요인에 관한 실증연구: 판교테크노밸리 사례를 중심으로)

  • Chung, Sunyang;Hwang, Doohee;Yim, Jongbin
    • Journal of Korea Technology Innovation Society
    • /
    • v.19 no.4
    • /
    • pp.848-872
    • /
    • 2016
  • This study is an empirical analysis that makes a survey on the evaluation of innovation cluster. For this purpose, we explore a case of innovation cluster, the Pangyo Techno Valley. This survey applies a research frame and evaluation contents that the innovation performance which is the institutional, physical, and social configurations of innovation clusters. In particular, this empirical analysis identifies the configuration factors which are the rational influence factors of individual subjects, in order to foster innovation clusters from the case study of the Pangyo Techno Valley. We can suggest that innovation policy from the results of innovation performance by applied configuration factors for evaluation of innovation cluster in order to enhance and facilitate for innovation cluster. Also, this study can provide lessons for regional policy implementation and new cluster policy agenda in Korea.

A STUDY ON THE CHANGES OF THE ELASTIC PROPERTIES TN LOOPED WIRES BY VARIABLE FACTORS (변환요소에 따른 LOOPED WIRE의 탄성 변화에 관한 연구)

  • Na, Yong-In;Kim, Sang-Cheol
    • The korean journal of orthodontics
    • /
    • v.25 no.3 s.50
    • /
    • pp.263-271
    • /
    • 1995
  • The purpose of this study nab to evlauate and compare the effect of the variable factors of wire on the elastic properties of looped rectangular wire. Five variable factors were presented-material(Hi-T, blue Elgiloy), wire size(.016'$\;\times\;$.022', .018'$\;\times\;$.025'), loop length(15mm, 20mm), loop configuration(open loop, closed loop), gabling (non-gable, gable). So, the total 256 specimens were divided into 32 groups, and each of those nab pulled on Instron testing machine. The load-deflection curve of each wire obtained, from which force, range in elastic limit, and stiffness were computed and analyzed statistically. The results were obtained as follows : 1. All of the variable factors - wire material, size, loop length loop configuration, and gabling - took a significant effect on load-deflection rate of looped wire. 2. The force at elastic limit was the smallest in the group of Hi-T, .016'$\;\times\;$.022', 20mm loop length, open loop, non-gable, and the largest in the group of blue Elgiloy, .018'$\;\times\;$.025', 15mm loop length, closed loop, non-gable. 3. The range at elastic limit was the smallest in the group of Hi-T, .018'$\;\times\;$.025', 15mm loop length, open loop, non-gable, and the largest in the group of HI-T, .016'$\;\times\;$.022', 20mm loop length, closed loop, gable. 4. Loop configuration and loop length were the most effective factors on the elastic properties of looped wires, and gabling was the least effective.

  • PDF

A Study on the Guidance Signage System of Outpatient in General Hospital using Spatial Configuration Theory - View from G.D.Weisman's Way-finding Influence Factors (공간구조론을 적용한 종합병원 외래부 유도사인 배치 및 평가에 관한 연구 - G.D.Weisman의 길찾기 요소를 중심으로)

  • Kim, Suktae;Paik, Jinkyung
    • Journal of The Korea Institute of Healthcare Architecture
    • /
    • v.21 no.3
    • /
    • pp.25-35
    • /
    • 2015
  • Purpose: Signs that are installed at unnoticeable places or that disconnect before the destination can bring errors of location information delivery. Therefore, this study aims to find out the spatial relation between structure of space and signs in the perspective of visual exposure possibility, operating arrangement and assesment by applying spatial structure theory. Methods: Effectiveness of organization of guidance signs was evaluated after the four way-finding factors(Plan Configuration, Sign System, Perceptual Access, Architectural Difference) that G.D.Weisman suggested were interpreted by spatial structure theory(J-Graph analysis, Space Syntax, Visual Graph Analysis) under the premise that it is closely related to the structure of space. Results: 1) Because the south corridor that connects each department of outpatient division is located in the hierarchy center of the space, and walking density is expected to be high, guidance signs need to be organized at the place with high integration value. 2) The depth to the destination space can be estimated through J-Graph analysis. The depth means a switch of direction, and the guidance signs are needed according to the number. 3) According to visibility graph analysis, visual exposure can be different in the same hierarchy unit space according to the shape of the flat surface. Based on these data, location adjustment of signs is possible, and the improvement effect can be estimated quantitatively. Implications: Spatial structure theory can be utilized to design and evaluate sign systems, and it helps to clearly understand the improvement effect. It is desirable to specify design and estimation of sign systems in the order of J-Graph analysis${\rightarrow}$Space Syntax Theory${\rightarrow}$visibility graph analysis.

Basic Configuration Design and Performance Prediction of an 1 MW Wind Turbine Blade (1 MW 풍력터빈 블레이드 형상기본설계 및 성능해석)

  • Kim, Bum-Suk;Kim, Mann-Eung;Lee, Young-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.11 no.5
    • /
    • pp.15-21
    • /
    • 2008
  • In modem wind power system of large capacity above 1MW, horizontal axis wind turbine(HAWT) is a common type. And, the optimum design of wind turbine to guarantee excellent power performance and its reliability in structure and longevity is a key technology in wind Industry. In this study, mathematical expressions based upon the conventional BEMT(blade element momentum theory) applying to basic 1MW wind turbine blade configuration design. Power coefficient and related flow parameters, such as Prandtl's tip loss coefficient, tangential and axial flow induction factors of the wind turbine analyzed systematically. X-FOIL was used to acquire lift and drag coefficients of the 2-D airfoils and we use Viterna-Corrigan formula to interpolate the aerodynamic characteristics in post-stall region. In order to predict the performance characteristics of the blade, a performance analysis carried out by BEMT method. As a results, axial and tangential flow factors, angle of attack, power coefficient investigated in this study.

Experimental Research of an ECR Heating with R-wave in a Helicon Plasma Source

  • Ku, Dong-Jin;An, C.Y.;Park, Min;Kim, S.H.;Wang, S.J.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.274-274
    • /
    • 2012
  • We have researched on controlling an electron temperature and a plasma collision frequency to study the effect of collisions on helicon plasmas. So, we have designed and constructed an electron cyclotron resonance (ECR) heating system in the helicon device as an auxiliary heating source. Since then, we have tried to optimize experimental designs such as a magnetic field configuration for ECR heating and 2.45GHz microwave launching system for its power transfer to the plasma effectively, and have characterized plasma parameters using a Langmuir probe. For improving an efficiency of the ECR heating with R-wave in the helicon plasma, we would understand an effect of R-wave propagation with ECR heating in the helicon plasma, because the efficiency of ECR heating with R-wave depends on some factors such as electron temperature, electron density, and magnetic field gradient. Firstly, we calculate the effect of R-wave propagation into the ECR zone in the plasma with those factors. We modify the magnetic field configuration and this system for the effective ECR heating in the plasma. Finally, after optimizing this system, the plasma parameters such as electron temperature and electron density are characterized by a RF compensated Langmuir probe.

  • PDF

Basic Configuration Design and Performance Analysis of a 100kW Wind Turbine Blade using Blade Element Momentum Theory (BEMT에 의한 100kW 풍력터빈 블레이드 기본설계 및 출력 성능해석)

  • Kim, Bum-Suk;Kim, Mann-Eung;Lee, Young-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.6
    • /
    • pp.827-833
    • /
    • 2008
  • In this study, mathematical expressions based upon the conventional BEMT(blade element momentum theory) was applied to basic 100kW wind turbine blade configuration design. Power coefficient and related flow parameters, such as Prandtl's tip loss coefficient, tangential and axial flow induction factors of the wind turbine were analyzed systematically. X-FOIL was used to acquire lift and drag coefficients of the 2-D airfoils and Viterna-Corrigan formula was used o interpolate he aerodynamic characteristics in post-stall region. Also, aerodynamic characteristics, measured in a wind tunnel to calculate he power coefficient was applied. The comparative results such as axial and tangential flow factors, power coefficients were presented in this study. Power coefficient, calculated by in-house code was compared with the GH-Bladed result. The difference of the aerodynamic characteristics caused the difference of the performance characteristics as variation as TSR.

Structural Deformation and Flow Analysis for Designing Air Plate of a Fuel Cell (구조 변형을 고려한 연료전지 공기판의 유동 해석)

  • Yang, Ji-Hae;Park, Jung-Sun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.7
    • /
    • pp.877-884
    • /
    • 2004
  • In this paper, structural analysis is performed to investigate the deformation of porous media in a proton exchange membrane fuel cell (PEMFC). Structural deformation of air plate of the fuel cell causes the change in configuration and cross sectional area of the channel. The distributions of mass flow rate and pressure are major factors to decide the performance of a PEMFC. These factors are affected by channel configuration of air plate. Two kinds of numerical air plate models are suggested for flow analyses. Deformed porous media and undeformed porous media are considered for the two models. The Numerical flow analysis results between deformed porous media and undeformed porous media have some discrepancy in pressure distribution. The pressure and velocity distribution under a working condition are numerically calculated to predict the performance of the air plates. Pressure and velocity distributions are compared for two models. It is shown that structural deformation makes difference in flow analysis results.

The User Fee Introduction and Its Effect in the Health System of Low and Middle Income Countries: An Exploratory Study Using Realist Review Method (중·저소득 국가의 건강보장제도에서 이용자 부담 도입과 효과: Realist Review 방법을 활용한 탐색적 연구)

  • Son, Kyung Bok;Kim, Chang-Yup
    • Health Policy and Management
    • /
    • v.25 no.3
    • /
    • pp.207-220
    • /
    • 2015
  • Background: The purpose of this exploratory study is to explain where, when and how the introduction of user fee system works in low and middle income countries using context, mechanism, and outcome configuration. Methods: Considering advanced research in realist review approach, we made a review process including those following 4 steps. They are identifying the review question, initial theory and mechanism, searching and selecting primary studies, and extracting, analyzing, and synthesizing relevant data. Results: User fee had a detrimental effect on medical utilization in low and middle income countries. Also previous and current interventions and community participation were critical context in user fee system. Those contexts were associated with intervention initiation and recognition and coping strategies. Such contexts and mechanisms were critical explanatory factors in medical utilization. Conclusion: User fee is a series of interventions that are fragile and dynamic. So the introduction of user fee system needs a comprehensive understanding of previous and new intervention, policy infrastructure, and other factors that can influence on medical utilization.

A Study on Visitors' Circulation Pattern and Amount of Traffic in the Multi-Purpose Commercial Complex (복합상업시설에서의 방문객의 경로선택과 통행량에 관한 연구 - 공간구문론과 현장조사 비교연구 -)

  • Song Se-Young;Song Byung-Ha
    • Korean Institute of Interior Design Journal
    • /
    • v.14 no.5 s.52
    • /
    • pp.236-244
    • /
    • 2005
  • This study investigates the effects of the spatial elements of the mulit-purpose commercial complex on visitors' circulation pattern and wayfinding by employing method of space syntax, observation, and interview survey. Two commercial complexes were investigated; Techno-mart represented a vertical type and COEX mall rendered a horizontal one. Analysis of the spatial elements using space-syntax method provided a base line for comparing analyses by the two other methods. Analysis of the interview additionally survey identified the factors affecting wayfinding behavior and contributing satisfaction. The findings suggest that level of the effects of the spatial configuration on visitors' circulation pattern is greater in Techno-mart(vertically oriented) than COEX(horizontally). In COEX, for instance, specific route that connects sub-way station and cinema complex carries far more traffic than main route, even though the main route indicates higher degree of integration of spatial configuration. Similar with observation, the degree of integration is corresponding with the satisfaction and easiness of wayfinding behavior In COEX, specific place and feature seem to have more effects on visitors' wayfinding behavior and circulation pattern than the level of integration of spatial configuration.

Effects of Material Properties on Optimal Configuration Design of Absorbing Porous Materials (흡음을 위한 다공성 물질의 최적형상설계에서 물성치의 영향)

  • Lee, Joong-Seok;Kim, Yoon-Young;Kang, Yeon-June
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.622-624
    • /
    • 2008
  • This investigation studies the effects of material properties and corresponding propagation wave types on optimal configurations of sound absorbing porous materials in maximizing the absorption performance by topology optimization. The acoustic behavior of porous materials is characterized by their material properties which determine motions of the frame and the air. When the frame has a motion, two types of compressional wave propagate in the porous material. Because each wave in the material make different influence on the absorption performance, it is important to understand the relative contribution of each wave to the sound absorption. The relative contribution of the propagating waves in a porous material is determined by the material properties, therefore, an optimal configuration of a porous material to maximize the absorption performance is apparently affected by the material properties. In fact, virtually different optimal configurations were obtained for absorption coefficient maximization when the topology optimization method developed by the authors was applied to porous materials having different material properties. In this investigation, some preliminary results to explain the findings are presented. Although several factors should be considered, the present investigation is focused on the effects of the material properties and corresponding propagation waves on the optimized configurations.

  • PDF