• Title/Summary/Keyword: Configuration Accuracy

Search Result 378, Processing Time 0.031 seconds

Development Status of Military Search and Rescue System M&S Software (군 탐색구조 시스템 M&S 소프트웨어 개발 현황)

  • Kim, Jaehyun;Lee, Sanguk;Kim, Jaehoon;Ahn, Woo-Geun
    • Journal of Satellite, Information and Communications
    • /
    • v.9 no.3
    • /
    • pp.121-126
    • /
    • 2014
  • ETRI(Electronics and Telecommunication Research Institute) has joined National GNSS Research Center program of Defense Acquisition Program Administration and Agency for Defense Development in 2010. The research subject is technology for MSAR(Military Search and Rescue) system configuration. In this project, we analyses the ways in order to improve the accuracy, reliability, availability for MSAR system from M&S(Modeling and Simulation). The MSAR System M&S Software can be used for performance analysis of new elements, such as ground elements and satellite elements without any hardware development. In this paper, after introduction of the architecture design and functional scope of the simulator, the performance analysis result for MSAR M&S software is presented.

Real-time Static Deflection Compensation of an LCD Glass-Handling Robot (LCD 글래스 핸들링 로봇의 실시간 정적 처짐 보상)

  • Cho Phil-Joo;Kim Dong-Il;Kim Hyo-Gyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.7 s.250
    • /
    • pp.741-749
    • /
    • 2006
  • For last couple of decades, uses of TFI-LCDs have been expanded to many FPD(Flat Panel Display) applications including mobile displays, desktop monitors and TVs. Furthermore, there has been growing demand for increasingly larger LCD TVs. In order to meet this demand as well as to improve productivity, LCD manufactures have continued to install larger-generation display fabrication facilities which are capable of producing more panels and larger displays per mother glass(substrate). As the size of mother glass becomes larger, a robot required to handle the glass becomes bigger accordingly, and its end effectors(arms) are extended to match the glass size. With this configuration, a considerable static deflection occurs at the end of the robot arms. In order to stack maximum number of mother glasses on a given footprint, the static deflection should be compensated. This paper presents a novel static deflection compensation algorithm. This algorithm requires neither measurement instrument nor additional vertical axis on the robot. It is realized by robot controller software. The forward and inverse kinematics considering compensation always guarantees a unique solution, so the proposed algorithm can be applied to an arbitrary robot position. The algorithm reduced static deflection by 40% in stationary robot state experiment. It also improved vertical path accuracy up to 60% when the arm was running at its maximum speed. This algorithm has been commercialized and successfully applied to a seventh-generation LCD glass-handling robot.

A Study of Design Process for Sensor-based Smart clothing based on requirement engineering (요구공학을 적용한 센서기반 스마트 의류 디자인 프로세스 연구)

  • Cho, Hakyung;Lee, Joo Hyeon
    • Science of Emotion and Sensibility
    • /
    • v.16 no.3
    • /
    • pp.397-408
    • /
    • 2013
  • According to increase of concerning in health and entry of aging society, sensor-based smart clothing has developed various type and applications. Sensor-based smart clothing should be designed with considering of the interaction between a human body-device-clothing, such as accuracy of signal, wearability, suitability and the configuration of the sensor and so on. In this respect, these characteristics distinguish sensor-based smart clothing process from clothing process and Sensor-based smart clothing process is expected to be needing requirements Specification for development purpose and interoperability assessment based on requirements engineering. In this study, to assess efficiency of process based on requirement engineering, the sensor-based smart clothing process was deducted in two types by analysis of empirical performance. Presented two process were empirically evaluated through qualitative and quantitative evaluation. As a result, design process II based on requiments engineering were confirmed more effective process than processI.

  • PDF

Quantitative analysis of the errors associated with orbit uncertainty for FORMOSAT-3

  • Wu Bor-Han;Fu Ching-Lung;Liou Yuei-An;Chen Way-Jin;Pan Hsu-Pin
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.87-90
    • /
    • 2005
  • The FORMOSAT-3/COSMIC mission is a micro satellite mission to deploy a constellation of six micro satellites at low Earth orbits. The final mission orbit is of an altitude of 750-800 lan. It is a collaborative Taiwan-USA science experiment. Each satellite consists of three science payloads in which the GPS occultation experiment (GOX) payload will collect the GPS signals for the studies of meteorology, climate, space weather, and geodesy. The GOX onboard FORMOSAT -3 is designed as a GPS receiver with 4 antennas. The fore and aft limb antennas are installed on the front and back sides, respectively, and as well as the two precise orbit determination (POD) antennas. The precise orbit information is needed for both the occultation inversion and geodetic research. However, the instrument associated errors, such as the antenna phase center offset and even the different cable delay due to the geometric configuration of fore- and aft-positions of the POD antennas produce error on the orbit. Thus, the focus of this study is to investigate the impact of POD antenna parameter on the determination of precise satellite orbit. Furthermore, the effect of the accuracy of the determined satellite orbit on the retrieved atmospheric and ionospheric parameters is also examined. The CHAMP data, the FORMOSAT-3 satellite and orbit parameters, the Bernese 5.0 software, and the occultation data processing system are used in this work. The results show that 8 cm error on the POD antenna phase center can result in ~8 cm bias on the determined orbit and subsequently cause 0.2 K deviation on the retrieved atmospheric temperature at altitudes above 10 lan.

  • PDF

3-D Optimal Disposition of Direction Finders (방향탐지장비의 삼차원 최적 배치)

  • Lee, Ho-Joo;Kim, Chang-Geun;Kang, Sung-Su
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.4
    • /
    • pp.765-772
    • /
    • 2011
  • In this paper, a simulation-based method is presented to dispose direction finders in three dimensional space for locating targets using the directional data. A direction finder(DF) is a military weapon that is used to find locations of targets that emit radio frequencies by operating two or more DFs simultaneously. If one or more DFs are operated in the air, the accuracy of location estimation can be enhanced by disposing them in a better configuration. By extending the line method, which is a well-known algorithm for 2-D location estimation, into 3-D space, the problem of 3-D location estimation is defined as an nonlinear programming form and solved analytically. Then the optimal disposition of DFs is considered with the presented method in which methods of simulation and search technique are combined. With the suggested algorithm for 3-D disposition of DFs, regions in which targets exist can be effectively covered so that the operation effect of DF be increased.

Using Skeleton Vector Information and RNN Learning Behavior Recognition Algorithm (스켈레톤 벡터 정보와 RNN 학습을 이용한 행동인식 알고리즘)

  • Kim, Mi-Kyung;Cha, Eui-Young
    • Journal of Broadcast Engineering
    • /
    • v.23 no.5
    • /
    • pp.598-605
    • /
    • 2018
  • Behavior awareness is a technology that recognizes human behavior through data and can be used in applications such as risk behavior through video surveillance systems. Conventional behavior recognition algorithms have been performed using the 2D camera image device or multi-mode sensor or multi-view or 3D equipment. When two-dimensional data was used, the recognition rate was low in the behavior recognition of the three-dimensional space, and other methods were difficult due to the complicated equipment configuration and the expensive additional equipment. In this paper, we propose a method of recognizing human behavior using only CCTV images without additional equipment using only RGB and depth information. First, the skeleton extraction algorithm is applied to extract points of joints and body parts. We apply the equations to transform the vector including the displacement vector and the relational vector, and study the continuous vector data through the RNN model. As a result of applying the learned model to various data sets and confirming the accuracy of the behavior recognition, the performance similar to that of the existing algorithm using the 3D information can be verified only by the 2D information.

Numerical Analysis of Si-based Photovoltaic Modules with Different Interconnection Methods

  • Park, Chihong;Yoon, Nari;Min, Yong-Ki;Ko, Jae-Woo;Lim, Jong-Rok;Jang, Dong-Sik;Ahn, Jae-Hyun;Ahn, Hyungkeun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.15 no.2
    • /
    • pp.103-111
    • /
    • 2014
  • This paper investigates the output powers of PV modules by predicting three unknown parameters: reverse saturation current, and series and shunt resistances. A theoretical model using the non-uniform physical parameters of solar cells, including the temperature coefficients, voltage, current, series and shunt resistances, is proposed to obtain the I-V characteristics of PV modules. The solar irradiation effect is included in the model to improve the accuracy of the output power. Analytical and Newton methods are implemented in MATLAB to calculate a module output. Experimental data of the non-uniform solar cells for both serial and parallel connections are used to extend the implementation of the model based on the I-V equation of the equivalent circuit of the cells and to extend the application of the model to m by n modules configuration. Moreover, the theoretical model incorporates, for the first time, the variations of series and shunt resistances, reverse saturation current and irradiation for easy implementation in real power generation. Finally, this model can be useful in predicting the degradation of a PV system because of evaluating the variations of series and shunt resistances, which are critical in the reliability analysis of PV power generation.

Development of a Body Size Measuring Process Utilizing 2D Images (2D 이미지를 활용한 인체치수 구현 프로세스 개발)

  • Jeong, Jae-Hoon;Ryu, Ji-Hyun
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.33 no.12
    • /
    • pp.1853-1861
    • /
    • 2009
  • Body sizing of has been recognized as an important element affecting the degree of customer satisfaction in the apparel industry. Recent developments in IT technologies have enabled more studies in custom-made apparel systems that comply with the diverse demands from customers in many countries. Diverse methods to obtain personal physical size are being studied. This study estimates the accuracy by developing the system in which the data of length and girth can be calculated through changing a modeling by comparing the data with circular 3-dimensional physical configuration data. This information was computed from the process (such as the conversion to a standardize image) which utilizes the image capture of 2-dimensional three sides (front, side, and rear), contour tracing, and key-node selection and by realizing it in the real world.

A Development of Ship Block Leveling System based on the Axiomatic Design (공리적 설계 기반 선체 블록 레벨링 시스템 개발)

  • Noh, Jackyou;Lim, Nam-Won;Oh, Jung-Keun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.21 no.2
    • /
    • pp.207-214
    • /
    • 2015
  • In this paper the independence axiom, one of two principal axioms of axiomatic design theory, is applied to the leveling system development as an design criteria. After functional requirements and corresponding design parameters constitute an initial design matrix for the leveling system, sequence, which is compatible with the independence axiom, of the design parameters of the design matrix is determined and independent components of block leveling system are revealed. As a result of axiomatic design, system configuration related to the design sequence is developed. In order to verify and validate the developed block leveling system, test with real hull block leveling work in site by using total station which is used to acquire three dimensional coordinate of target point is performed. Comparison with measured data and output data from the block leveling system shows the system accuracy is under 1 mm so that the developed system is verified and validated to be used in site.

Optimal sensor placement under uncertainties using a nondirective movement glowworm swarm optimization algorithm

  • Zhou, Guang-Dong;Yi, Ting-Hua;Zhang, Huan;Li, Hong-Nan
    • Smart Structures and Systems
    • /
    • v.16 no.2
    • /
    • pp.243-262
    • /
    • 2015
  • Optimal sensor placement (OSP) is a critical issue in construction and implementation of a sophisticated structural health monitoring (SHM) system. The uncertainties in the identified structural parameters based on the measured data may dramatically reduce the reliability of the condition evaluation results. In this paper, the information entropy, which provides an uncertainty metric for the identified structural parameters, is adopted as the performance measure for a sensor configuration, and the OSP problem is formulated as the multi-objective optimization problem of extracting the Pareto optimal sensor configurations that simultaneously minimize the appropriately defined information entropy indices. The nondirective movement glowworm swarm optimization (NMGSO) algorithm (based on the basic glowworm swarm optimization (GSO) algorithm) is proposed for identifying the effective Pareto optimal sensor configurations. The one-dimensional binary coding system is introduced to code the glowworms instead of the real vector coding method. The Hamming distance is employed to describe the divergence of different glowworms. The luciferin level of the glowworm is defined as a function of the rank value (RV) and the crowding distance (CD), which are deduced by non-dominated sorting. In addition, nondirective movement is developed to relocate the glowworms. A numerical simulation of a long-span suspension bridge is performed to demonstrate the effectiveness of the NMGSO algorithm. The results indicate that the NMGSO algorithm is capable of capturing the Pareto optimal sensor configurations with high accuracy and efficiency.