International journal of advanced smart convergence
/
제4권2호
/
pp.46-53
/
2015
This paper suggests a method of real time confidence interval estimation to detect abnormal states of sensor data. For real time confidence interval estimation, the mean square errors of the exponential smoothing method and moving average method, two of the time series analysis method, were compared, and the moving average method with less errors was applied. When the sensor data passes the bounds of the confidence interval estimation, the administrator is notified through alarms. As the suggested method is for real time anomaly detection in a ship, an Android terminal was adopted for better communication between the wireless sensor network and users. For safe navigation, an administrator can make decisions promptly and accurately upon emergency situation in a ship by referring to the anomaly detection information through real time confidence interval estimation.
The coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has become a global pandemic. No specific therapeutic agents or vaccines for COVID-19 are available, though several antiviral drugs, are under investigation as treatment agents for COVID-19. The use of convalescent plasma transfusion that contain neutralizing antibodies for COVID-19 has become the major focus. This requires mass screening of populations for these antibodies. While several countries started reporting population based antibody rate, its simple point estimate may be misinterpreted without proper estimation of standard error and confidence intervals. In this paper, we review the importance of antibody studies and present the 95% confidence intervals COVID-19 antibody rate for the Korean population using two recently performed antibody tests in Korea. Due to the sparsity of data, the estimation of confidence interval is a big challenge. Thus, we consider several confidence intervals using Asymptotic, Exact and Bayesian estimation methods. In this article, we found that the Wald method gives the narrowest interval among all Asymptotic methods whereas mid p-value gives the narrowest among all Exact methods and Jeffrey's method gives the narrowest from Bayesian method. The most conservative 95% confidence interval estimation shows that as of 00:00 on September 15, 2020, at least 32,602 people were infected but not confirmed in Korea.
Knowledge and data interpretation on statistical estimation was important to have statistical literacy that current curriculum was said not to satisfy. The author investigated mathematics teachers' MKT on statistical estimation concerning interpretation of confidence interval by using questionnaire and interview. SMK of teachers' confidence was limited to the area of textbooks to be difficult to interpret data of real life context. Most of teachers wrongly understood SMK of interpretation of confidence interval to have influence upon PCK making correction of students' wrong concept. SMK of samples and sampling distribution that were basic concept of reliability and confidence interval cognized representation of samples rather exactly not to understand importance and value of not only variability but also size of the sample exactly, and not to cognize appropriateness and needs of each stage from sampling to confidence interval estimation to have great difficulty at proper teaching of statistical estimation. PCK that had teaching method had problem of a lot of misconception. MKT of sample and sampling distribution that interpreted confidence interval had almost no relation with teachers' experience to require opportunity for development of teacher professionalism. Therefore, teachers were asked to estimate statistic and to get confidence interval and to understand concept of the sample and think much of not only relationship of each concept but also validity of estimated values, and to have knowledge enough to interpret data of real life contexts, and to think and discuss students' concepts. So, textbooks should introduce actual concepts at real life context to make use of exact orthography and to let teachers be reeducated for development of professionalism.
SAS의 PROC MIXED를 사용하면 일반적인 ANOVA 추정량뿐만 아니라 더 많은 장점을 갖는 제한최대우도추정법 또는 최대우도추정법으로 모수들을 추론할 수 있다. 혼합모형에 속하는 불균형중첩오차구조를 갖는 선형회귀모형에서 랜덤효과와 관련된 그룹간 분산의 신뢰 구간과 고정효과에 해당되는 회귀 계수들에 대 한 신뢰구간을 구하기 위하여 세 가지 크기를 갖는 표본에 대하여 PROC MIXED를 사용하였다. 모의실험을 실행한 결과, 대표본인 경우에는 모수들의 신뢰 구간을 구하기 위하여 PROC MIXED를 활용할 수 있지만, 소표본인 경우에는 PROC MIXED를 사용할 경우, 그룹간 분산의 신뢰 구간과 회귀계수 가운데 절편항의 신뢰구간은 주어진 신뢰계수를 지키지 못하는 것을 보인다.
Let {Xn, n = 1,2,${\cdots}$} be i.i.d. random variables with the only unknown parameters mean ${\mu}$ and variance a ${\sigma}^2$. We consider a sequential confidence interval C1 for the mean with coverage probability 1-${\alpha}$ and expected length of confidence interval $E_{\theta}$(Length of CI)/${\mid}{\mu}{\mid}{\leq}k$ (k : constant) and give some asymptotic properties of the stopping time in various limiting situations.
Journal of the Korean Data and Information Science Society
/
제19권4호
/
pp.1281-1288
/
2008
The purpose of this study is to consider the efficient methods for introducing the confidence interval. We explain various concepts and approaches about the confidence interval estimation. Computing methods for calculating the efficient confidence interval are suggested.
Journal of the Korean Data and Information Science Society
/
제24권4호
/
pp.825-833
/
2013
온실가스 인벤토리 불확도 산정을 위해서는 인벤토리의 신뢰구간 추정이 필수적이다. 일반적으로 모수에 대한 신뢰구간 추정시에는 모집단이 정규분포를 따른다고 가정한다. 그러나 자료의 구조가 복잡해짐에 따라 정규분포가 아닌 비대칭형 자료, 즉 양의 왜도를 갖는 자료의 경우 기존의 정규분포를 가정한 신뢰구간 추정 방식은 적합하지 않다. 본 연구에서는 비대칭형 분포인 지수분포의 신뢰구간추정 방법으로 모수적인 방법과 비모수적인 방법에 대해 각각 비교분석하였다. 모의실험을 통한 신뢰구간 추정 결과를 바탕으로 범위확률, 신뢰구간 길이, 상대적 편의를 비교한 결과 모수적 방법 중에서 예상했던 대로 정확한 방법인 카이제곱방법이 신뢰계수와 유사한 범위확률을 보이고 상대적 편의도 작아 모수적 방법 중에서 신뢰구간 추정에 가장 적합한 것으로 나타났다. 마찬가지로 비모수적 방법 중에서는 표준화된 t-붓스트랩 방법이 가장 적합한 것으로 나타났다.
RGB+D database has been widely used in object recognition, object tracking, robot control, to name a few. While rapid advance of active depth sensing technologies allows for the widespread of indoor RGB+D databases, there are only few outdoor RGB+D databases largely due to an inherent limitation of active depth cameras. In this paper, we propose a novel method used to build outdoor RGB+D databases. Instead of using active depth cameras such as Kinect or LIDAR, we acquire a pair of stereo image using high-resolution stereo camera and then obtain a depth map by applying stereo matching algorithm. To deal with estimation errors that inevitably exist in the depth map obtained from stereo matching methods, we develop an approach that estimates confidence of depth maps based on unsupervised learning. Unlike existing confidence estimation approaches, we explicitly consider a spatial correlation that may exist in the confidence map. Specifically, we focus on refining confidence feature with the assumption that the confidence feature and resultant confidence map are smoothly-varying in spatial domain and are highly correlated to each other. Experimental result shows that the proposed method outperforms existing confidence measure based approaches in various benchmark dataset.
Communications for Statistical Applications and Methods
/
제18권1호
/
pp.103-110
/
2011
Exponential distribution is widely adopted as a lifetime model. Many authors have considered the interval estimation of the parameters of two-parameter exponential distribution based on complete and censored samples. In this paper, we consider the interval estimation of the location and scale parameters and the joint confidence region of the parameters of two-parameter exponential distribution based on upper records. A simulation study is done for the performance of all proposed confidence intervals and regions. We also propose the predictive intervals of the future records. Finally, a numerical example is given to illustrate the proposed methods.
확률적 특성을 가지는 시스템의 시험을 위해서는 시험 입력을 일정 횟수만큼 반복하여 제공하고 관찰된 데이터를 기반으로 판정이 내려져야 한다. 구간 추정 기법을 이용하여 관찰된 데이터로부터 확률 값이 올바른지 여부를 판단할 수 있으며, 이 때 적절한 신뢰구간의 선택은 시험의 품질을 결정하는 중요한 요인이 된다. 본 논문에서는 다양한 크기의 표본에 대해 대표적인 구간 추정 기법인 Wald 신뢰구간과 Agresti-Coull 신뢰구간을 비교 분석한다. 각 신뢰구간이 확률 값 시험에 사용되었을 경우 올바른 구현 제품이 시험을 통과할 확률과 잘못된 구현제품이 시험을 통과하지 못할 확률을 기반으로 비교 분석을 수행하며, 확률 값이 올바른지를 판단하기 위한 양측검정뿐만 아니라 확률 값이 기준 확률 이상인지 여부를 판단하기 위한 단측검정을 사용하는 경우에 대해서도 비교 분석을 수행한다. 비교 분석 결과 양측검정의 경우 Agresti-Coull 신뢰구간을 사용할 것을 추천하며, 단측검정의 경우 큰 크기의 표본에 대해서는 Agresti-Coull 신뢰구간을, 적은 크기의 표본에 대해서는 Wald 신뢰구간 또는 Agresti-Coull 신뢰구간을 선택적으로 사용할 것을 추천한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.