• 제목/요약/키워드: Cone-plate

Search Result 180, Processing Time 0.034 seconds

Case Study Top-Base Foundation Static Loading Test in Reclaimed Land (매립지반의 팽이말뚝 평판재하시험 사례 연구)

  • Shin, Eun-Chul;Kim, Sung-Hwan;Lee, Ae-Young
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.721-728
    • /
    • 2008
  • Top-Base Method is a stabilization method for light weight structures particularly in the soft ground. It is widely used for the increment of bearing capacity and the effect of restraining settlement when the bearing capacity of the ground is not enough. Top-shaped cone concrete foundations are installed in graveled laid over soft ground. The principle of the basic method is to maximize effect of dispersing the overburden pressure by increasing the contact area of the top-shaped cone. Therefore, the bearing capacity is increased and the settlement is decreased by the embedded resistance of pile part in the ground. In this paper, the plate bearing test was conducted to evaluate the feasibility of Top-Base foundation. Based on the test results, the coefficient of subgrade reaction, elastic modulus, and settlement of foundation on reclaimed land was derived.

  • PDF

Non-Newtonian Rheological Properties of Poly(vinyl alcohol) hydrogel (Poly(vinyl alcohol) hydrogel의 비 뉴톤 유변학적인 성질)

  • Kim, Nam-Jeong
    • Elastomers and Composites
    • /
    • v.44 no.3
    • /
    • pp.323-328
    • /
    • 2009
  • The rheological properties of complex materials such as polymer melts show complicated non-Newtonian flow phenomena when they are subjected to shear flow. These flow properties are controlled by the characteristics of flow units and the interactions among the flow segments. The non-Newtonian flow curves of poly(vinyl alcohol) hydrogel were obtained in various concentrations and temperatures by using a cone-plate rheometer. By applying non-Newtonian flow equation to the flow curves for PVA hydrogel samples, the rheological parameters were obtained. The PVA hydrogel samples are shear thinning under increasing shear rate modes which result in thixotropic behavior.

Risk of Smoke Occurring in the Combustion of Plastics (플라스틱의 연소 시 발생하는 연기 위험성에 관한 연구)

  • You, Jisun;Chung, Yeong-jin
    • Fire Science and Engineering
    • /
    • v.33 no.1
    • /
    • pp.69-75
    • /
    • 2019
  • In this study, the combustibility of five types of plastic plates, fiber reinforced plastic (FRP), polystyrene (PS), polycarbonate (PC), polypropylene (PP), and polyvinyl chloride (PVC), were tested using a cone calorimeter (ISO 5660). The PVC plate showed a $44.65kW/m^2$ lower peak heat release rate (HRR) and a $30.97kW/m^2$ lower maximum average rate of heat emission than the other four types of plastics, whereas the PS plate showed a $773.44kW/m^2$ higher peak HRR and $399.14kW/m^2$ higher maximum average rate of heat emission. The PC plate and PS plate showed the highest HRR by a maximum of 3.88 times in $CO_{mean}$ yields, while the PS pate and PP plate showed the highest HRR by a maximum 4.88 times in $CO_{2mean}$ yields. In addition, the smoke performance index (SPI) of the PS plate decreased by 74.81%~95.99%; the smoke growth index (SGI) increased to 76%~300%; the smoke intensity (SI) also increased to 917.73% ~ 9607.57%, and the danger of smoke increased. The PS plate was found to have the highest risk of life damage due to smoke on the thermal and smoke sides.

Investigation of the Three-Dimensional Turbulent Flow Fields of the Gas Swirl Burner with a Cone Type Baffle Plate(I)

  • Kim, Jang-kweon
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.7
    • /
    • pp.895-905
    • /
    • 2001
  • This paper presents vector fields, three dimensional mean velocities, turbulent intensities, turbulent kinetic energy and Reynolds shear stresses measured in the X-Y plane of the gas swirl burner with a cone type baffle plate by using an X-type hot-wire probe. This experiment is carried out at the flow rates of 350 and 450ℓ/min which are equivalent to the combustion air flow rate necessary to release 15,000 kcal/hr in a gas furnace. The results show that the maximum axial mean velocity component exists around the narrow slits situated radially on the edge of a burner. Therefore, there is some entrainment of ambient air in the outer region of a burner. The maximum values of turbulent intensities occur around the narrow slits and in front of a burner up to X/R=1.5. Moreover, the turbulent intensity components show a relatively large value in the inner region due to the flow diffusion and mixing processes between the inclined baffle plate and the swirl vane. Consequently, the combustion reaction is expected to occur actively near these regions.

  • PDF

Investigation of the Three-dimensional Turbulent Flow Fields in Cone Type Gas Burner for Furnace - On the Turbulent Characteristics - (난방기용 콘형 가스버너에서 3차원 난류 유동장 고찰 - 난류특성치에 대하여 -)

  • Kim, J.K.;Jeong, K.J.;Kim, S.W.;Kim, I.K.
    • Journal of Power System Engineering
    • /
    • v.5 no.1
    • /
    • pp.21-26
    • /
    • 2001
  • This paper represents the turbulent intensity, the turbulent kinetic energy and Reynolds shear stress in the X-Y plane of cone type swirl gas burner measured by using X-probe from the hot-wire anemometer system. The experiment is carried out at flowrate 350 and $450{\ell}/min$ respectively in the test section of subsonic wind tunnel. The turbulent intensity and the turbulent kinetic energy show that the maximum value is formed in the narrow slits distributed radially on the edge of a cone type swirl burner, hence, the combustion reaction is anticipated to occur actively near this region. And the turbulent intensities ${\upsilon}\;and\;{\omega}$ are disappeared faster than the turbulent intensity u due to the inclined flow velocity ejecting from the swirl vanes of a cone type baffle plate of burner. Moreover, the Reynolds shear stress $u{\upsilon}$ is distributed about three times as large as the Reynolds shear stress $u{\omega}$ in the outer region of the cone type gas burner.

  • PDF

Impact Fracture Behavior of Ceramic Plates Using Instrumented Long Bar (계장화한 긴 바를 사용한 세라믹판의 충격 파괴 거동)

  • Sin, Hyeong-Seop;O, Sang-Yeop;Choe, Su-Yong;Seo, Chang-Min;Jang, Sun-Nam
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.4
    • /
    • pp.787-793
    • /
    • 2002
  • In this study, a bar impact test of low velocity was carried out to gain an insight into the damage mechanism and sequence induced in alumina plates(AD 85 and AD 90) under impact conditions. An experimental setup utilizing an instrumented long bar impact was devised, that can measure directly the impact force applied to the specimen and supply a compressive contact pressure to the specimen. During the bar impact testing, the influences of the contact pressure applied along the impact direction to the specimen on the fracture behavior were investigated. The measured impact force profiles explained well the damage behavior induced in alumina plates. The higher contact pressure to the specimen led to the less damage due to the suppression of radial cracks due to the increase in the apparent flexural stiffness of plate. It had produced the change of damage pattern developed in the specimen; from the radial cracks to the local contact stress dominant damage. It would contribute to the improvement of the ballistic property in ceramic plates. The observed results showed the following sequence in damage developed: The development of cone crack at impact region, the formation of radial cracks from the rear surface of plate depending on the plate thickness, the occurrence of crushing within the cone envelope and the fragmentation.

The occurrence of dental implant malpositioning and related factors: A cross-sectional cone-beam computed tomography survey

  • Safi, Yaser;Amid, Reza;Zadbin, Fariba;Ahsaie, Mitra Ghazizadeh;Mortazavi, Hamed
    • Imaging Science in Dentistry
    • /
    • v.51 no.3
    • /
    • pp.251-260
    • /
    • 2021
  • Purpose: Dental implants are widely used for the rehabilitation of edentulous sites. This study investigated the occurrence of dental implant malpositioning as shown on post-implantation cone-beam computed tomography (CBCT) and to identify related factors. Materials and Methods: Samples with at least 1 malpositioned dental implant were collected from a central radiology clinic in Tehran, Iran from January 2017 to January 2019. Variables such as demographic characteristics, length and diameter of implants, type of implant, sites of implant insertion, different types of implant malpositioning problems (cortical plate perforation, interference with anatomical structures), angulation of the implant, and the severity of malpositioning were assessed. In addition, the incidence of implant fracture and over-drilling was evaluated. Data were statistically analyzed using the chi-square test, 1-sample t-test, and Spearman correlation coefficients. Results: In total, 252 patients referred for implant postoperative CBCT evaluations were assessed. The cases of implant malpositioning included perforation of the buccal cortical plate (19.4%), perforation of the lingual cortical plate (14.3%), implant proximity to an adjacent implant (19.0%), implant proximity to an adjacent tooth (3.2%), interference with anatomical structures(maxillary sinus: 18.3%, mandibular canal: 11.1%, nasal cavity: 6.3%, mental foramen: 5.6%, and incisive canal: 0.4%). Implant fracture and over-drilling were found in 1.6% and 0.8% of cases, respectively. Severity was categorized as mild (9.5%), moderate (35.7%), severe (37.7%), and extreme (17.1%), and 52.4% of implants had inappropriate angulation. Conclusion: CBCT imaging is recommended for detecting dental implant malpositioning. The most common and severe type of malpositioning was buccal cortex perforation.

Railbed Evaluation by using In-situ Penetration Test (원위치 관입실험기를 활용한 철도 노반 평가)

  • Kim, Ju-Han;Park, Jung-Hee;Yoon, Hyung-Koo;Koh, Tae-Hoon;Lee, Jong-Sub
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.261-267
    • /
    • 2011
  • The test fit has commonly used for the evaluation of the railbed condition, and indirect methods by using the compressional wave are also studied. the direct evaluation method by penetration test has not been studied. For the measurement of in-situ cone tip resistance of the railbed with minimizing the disturbance of the upper railbed. the cone penetrometer with the helical type outer rod(CPH) was developed. The outer rod, which has helical screw, is penetrated through the gravel layer and provides the reaction force for cone penetration testing. the cone tip resistances are measured by the mini cone penetrometer, where diameter is 15mm. For the developing the mini cone, strain gauge installation, circuit configuration, penetration rates and calibration process are considered. For the easy penetration of the screw rod in the field, the reaction force stepping plate and guide column are arranged. The screw rod are penetrated through the gravel layer. And the mini cone was pushed into the subgrade railbed at the penetration rate of 1mm/sec. The penetration test shows that the cone tip resistance increases along the depth. In addition, the subgrade condition is evaluated. This study demonstrates that the CPH may be effectively used for the evaluation of subgrade method any damage of the gravel layer.

  • PDF

Adhesion Performance of Electromagnetic Induction Heating Pixture for the Integration with a Waterproof & Root Barrier Sheet and a Roof Green Unit System (방수·방근시트와 옥상녹화 박스유닛 시스템의 일체화를 위한 전자기 유도가열 융착 고정구의 부착성능)

  • Oh, Chang-Won
    • Journal of the Korea Institute of Building Construction
    • /
    • v.18 no.5
    • /
    • pp.463-469
    • /
    • 2018
  • A currently used roof green system with multi layers has a low constructability. Therefore a new integrated waterproof & root barrier sheet and roof green box unit system was developed using steel plate fixture and cone type fixture by electromagnetic induction heating method. This study was proceeded to evaluate adhesion performance of two types of fixtures on Engineering PE, TPO, PVC sheet in a normal condition, repeated heating and cooling condition. As a result, adhesion load on Engineering PE sheet showed the highest value. The adhesion loads of steel plate fixture showed higher value as heating temperature was getting higher. However adhesion loads of cone type fixture showed opposite tendency. Regarding to the test conditions, test results of normal condition, repeated heating and cooling condition showed same value. The cone type fixture using butyl tape showed 7 times lower adhesion load than that of cone type fixture using electromagnetic heating and 28% lower adhesion load in a repeated heating and cooling condition than a usual condition.

Anthropometric analysis of maxillary anterior buccal bone of Korean adults using cone-beam CT

  • Lee, Seung-Lok;Kim, Hee-Jung;Son, Mee-Kyoung;Chung, Chae-Heon
    • The Journal of Advanced Prosthodontics
    • /
    • v.2 no.3
    • /
    • pp.92-96
    • /
    • 2010
  • PURPOSE. The aim of this study was to evaluate the thickness of buccal and palatal alveolar bone and buccal bony curvature below root apex in maxillary anterior teeth of Korean adults using Cone-beam CT images. MATERIALS AND METHODS. The 3D image was reconstructed with dicom file obtained through CBCT from 20 - 39 year old Korean subjects (n = 20). The thickness of buccal and palatal plate, root diameter, the buccal bony curvature angle below root apex and the distance from root apex to the deepest point of buccal bony curvature were measured on maxillary anterior teeth area using OnDemand3D program. RESULTS. Mean thickness of buccal plate 3 mm below CEJ was $0.68{\pm}0.29\;mm$ at central incisor, $0.76{\pm}0.59\;mm$ at lateral incisor, and $1.07{\pm}0.80\;mm$ at canine. Mean thickness of palatal plate 3 mm below CEJ was $1.53{\pm}0.55\;mm$ of central incisor, $1.18{\pm}0.66\;mm$ of lateral incisor, $1.42{\pm}0.77\;mm$ of canine. Bucco-lingual diameter 3 mm below CEJ was $5.13{\pm}0.37\;mm$ of central incisor, $4.58{\pm}0.46\;mm$ of lateral incisor, and $5.93{\pm}0.47\;mm$ of canine. Buccal bony curvature angle below root apex was $134.7{\pm}17.5^{\circ}$ at central incisor, $151.0{\pm}13.9^{\circ}$ at lateral incisor, $153.0{\pm}9.5^{\circ}$ at canine. Distance between root apex and the deepest point of buccal bony curvature of central incisor was $3.67{\pm}1.28\;mm$ at central incisor, $3.90{\pm}1.51\;mm$ at lateral incisor, and $5.13{\pm}1.70\;mm$ at canine. CONCLUSION. Within the limitation of this study in Korean adults, the thickness of maxillary anterior buccal plate was very thin within 1mm and the thickness of palatal plate was thick, relatively. The buccal bony curvature below root apex of maxillary central incisor was higher than that of lateral incisor and canine and it seems that the buccal bony plate below root apex of central incisor is most curved.