• Title/Summary/Keyword: Cone Beam Computed Tomography(CBCT)

Search Result 552, Processing Time 0.03 seconds

Three-dimensional finite element analysis of unilateral mastication in malocclusion cases using cone-beam computed tomography and a motion capture system

  • Yang, Hun-Mu;Cha, Jung-Yul;Hong, Ki-Seok;Park, Jong-Tae
    • Journal of Periodontal and Implant Science
    • /
    • v.46 no.2
    • /
    • pp.96-106
    • /
    • 2016
  • Purpose: Stress distribution and mandible distortion during lateral movements are known to be closely linked to bruxism, dental implant placement, and temporomandibular joint disorder. The present study was performed to determine stress distribution and distortion patterns of the mandible during lateral movements in Class I, II, and III relationships. Methods: Five Korean volunteers (one normal, two Class II, and two Class III occlusion cases) were selected. Finite element (FE) modeling was performed using information from cone-beam computed tomographic (CBCT) scans of the subjects' skulls, scanned images of dental casts, and incisor movement captured by an optical motion-capture system. Results: In the Class I and II cases, maximum stress load occurred at the condyle of the balancing side, but, in the Class III cases, the maximum stress was loaded on the condyle of the working side. Maximum distortion was observed on the menton at the midline in every case, regardless of loading force. The distortion was greatest in Class III cases and smallest in Class II cases. Conclusions: The stress distribution along and accompanying distortion of a mandible seems to be affected by the anteroposterior position of the mandible. Additionally, 3-D modeling of the craniofacial skeleton using CBCT and an optical laser scanner and reproduction of mandibular movement by way of the optical motion-capture technique used in this study are reliable techniques for investigating the masticatory system.

Three-dimensional morphological evaluation of the hard palate in Korean adults with mild-to-moderate obstructive sleep apnea

  • Yu, Chen;Ahn, Hyo-Won;Kim, Seong-Hun
    • The korean journal of orthodontics
    • /
    • v.48 no.3
    • /
    • pp.133-142
    • /
    • 2018
  • Objective: The purpose of this study was to evaluate differences in three-dimensional (3D) morphology of the hard palate between Korean adults with and without mild-to-moderate obstructive sleep apnea (OSA) using cone-beam computed tomographic (CBCT) data. Methods: The protocol for the two-dimensional (2D) and 3D mathematical modeling was established by analyzing CBCT images of 30 adults with OSA and 30 matched controls without OSA, using MIMICS software. The linear and angular measurements were also determined using this software. The measurements were repeated for 30 palates, by the same operator, to assess reliability. Results: The palates of OSA patients were higher in the posterior part and narrower in the anterior-superior part than those of the control group (p < 0.05). The nasal cavities of patients with OSA were narrower (p < 0.05) than those of controls. The increasing angle of the first molar palatal root is a compensation of the upper dental arch to improve occlusion. However, for most palatal measurements, there were no significant differences between the OSA and control groups (p > 0.05). The results of 2D and 3D mathematical models were consistent for linear and angular measurements, indicating that 2D and 3D mathematical modeling of the palate is a reliable methodology. Conclusions: OSA is a multifactorial disease; the palates of adults with mild-to-moderate OSA do not have specific morphological features distinct from those of healthy controls.

Alveolar bone height according to the anatomical relationship between the maxillary molar and sinus

  • Choi, Yoon Joo;Kim, Young Hyun;Han, Sang-Sun;Jung, Ui-Won;Lee, Chena;Lee, Ari;Jeon, Kug Jin
    • Journal of Periodontal and Implant Science
    • /
    • v.50 no.1
    • /
    • pp.38-47
    • /
    • 2020
  • Purpose: The aim of this study was to investigate the available alveolar bone height between the maxillary molars and the sinus floor according to their anatomical relationship using cone-beam computed tomographic (CBCT) images. Methods: A total of 752 maxillary first (M1) and second molars (M2) on CBCT scans of 188 patients were selected. First, each maxillary molar was categorized as type 1, 2, 3, or 4 according to the relationship of the molar root with the maxillary sinus floor. The frequency distribution of each type was analyzed. Second, the shortest vertical distance (VD) of each molar was measured from the furcation midpoints of the roots to the lowest point of the sinus floor by 2 observers. Intraclass correlation coefficients and the t-test were calculated for the VD measurements. Results: For M1, type 3 was the most frequent, followed by type 2. For M2, type 3 was the most common, followed by type 1. The VD measurements of type 1 were 9.51±3.68 mm and 8.07±2.73 mm for M1 and M2, and those of type 3 were 3.70±1.52 mm and 4.03±1.53 mm for M1 and M2, respectively. The VD measurements of M2 were significantly higher in female patients than in male patients. Conclusions: Type 3 was the most frequent anatomical relationship in the maxillary molars, and showed the lowest alveolar bone height. This information will help clinicians to prevent complications related to the maxillary sinus during maxillary molar treatment and to predict the available bone height for immediate implant planning.

Assessment of Root and Root Canal Morphology of Human Primary Molars using CBCT (CBCT를 이용한 유구치의 치근 및 근관의 형태학적 평가)

  • Choi, Yoomin;Kim, Seonmi;Choi, Namki
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.47 no.1
    • /
    • pp.25-35
    • /
    • 2020
  • The purpose of this study is to evaluate the morphological characteristics of the roots and roots canals of primary molar teeth using Cone-Beam Computed Tomography (CBCT). A total of 68 CBCT images of children aged 4 - 5 years was used for this study. A total of 160 molar teeth were analyzed. Various parameters such as the number of roots and canals, length of root and root canal, and the angulation and shape of the roots were analyzed. All maxillary primary molars had 3 roots. The presence of 2 root canals in 1 root was only observed in the mesiobuccal root of maxillary primary second molars. Most mandibular primary molars had 2 roots, and most mesial roots had 2 root canals. Concerning the length of the roots, the palatal root of the maxillary primary molar was found to be longest whereas the distobuccal root was shortest. In mandibular primary molars, the mesial root was longer than the distal root. In maxillary primary molars, the palatal root had the greatest angulation whereas the distal root has the greatest in mandibular molars. The root and root canals of maxillary primary molars were more curved in shape whereas mandibular primary molars were straight.

Positional change of the condylar heads after wearing complete denture on dental cone beam CT (치과용 콘빔 CT영상에서 총의치 장착 후 하악과두의 위치변화)

  • Lee, Bong-Ho;Kim, Jae-Duk;Chung, Chae-Heon
    • Imaging Science in Dentistry
    • /
    • v.38 no.1
    • /
    • pp.23-27
    • /
    • 2008
  • Purpose: The aim of this study was to evaluate the change in the position of the mandibular condyle within articular fossa by a CBCT after wearing complete denture (CD). Materials and Methods: CBCT of 34 temporomandibular joints were taken from 9 male and 8 female patients with CB $Mercuray^{TM}$ (Hitachi, Japan) before and after wearing a CD for rehabilitation. Position of mandibular condyle within articular fossa at centric occlusion was evaluated with $Vimplant2.0^{TM}$ (CyberMed, Korea) on the central parasagittal view and curved panoramic coronal view of the condylar head. A statistical evaluation was done with SPSS. Results: The range of anteroposterior positional rate (AP) of condylar head within articular fossa was -16-5 and -10-12 respectively on the right and left sides. Before wearing CD, the AP rate showed discrepancy between right and left sides (p<0.05). After wearing CD, both condyles showed a tendency to decrease in posterior condylar position (right side; p<0.05). The average discrepancy between right and left side in mediolateral positional rate (MD) was 15.5 and 4.5 respectively before and after wearing CD. The improvement was observed in mediolateral relationship of both condylar heads after wearing CD (p< 0.01). Before wearing CD, the average horizontal angle of long axis of condylar head was $79.6{\pm}2.7^{\circ}\;and\;80.1{\pm}5.7^{\circ}$ respectively on the right and left sides. After wearing CD, both condyles were rotated in the same direction in average on axial plane. Conclusion: We observed with CBCT the significant clinical evidence in case of positional change of mandibular condyle after wearing complete denture.

  • PDF

The reliability of the cephalogram generated from cone-beam CT (Cone-beam CT로부터 제작된 측모 두부계측방사선사진의 정확도 평가)

  • Kang, Ji-Young;Kim, Kwang-Won;Lim, Sung-Hoon
    • The korean journal of orthodontics
    • /
    • v.37 no.6
    • /
    • pp.391-399
    • /
    • 2007
  • Three-dimensional approaches for the diagnosis and analysis of the dentofacial area are becoming more popular in accordance with the development of cone-beam CT (CBCT). The purposes of this study were to evaluate the reliability of cephalometric measurements of lateral cephalograms generated from a CBCT image by making comparisons with the traditional digital lateral cephalogram, and to evaluate the possibility of the clinical application of CBCT generated cephalogram images. Methods: Twenty patients whose external auditory meatus could be identified in the CBCT image were selected, and both CBCT and digital cephalograms were taken. Differences between the measurements of both cephalograms were tested by paired t-test. Results: Among the 22 measurements used, only U1-FH, Mx6 to PTV, and maxillomandibular difference showed statistically significant differences between the CBCT generated cephalogram and the digital cephalogram. Conclusions: The results suggest that the CBCT generated cephalogram can be used for some cephalometric measurements not requiring porion, PTV, condylion as a landmark (SNA, SNB, U1 to SN, IMPA, interincisal angle, etc.).

Adjunctive buccal and palatal corticotomy for adult maxillary expansion in an animal model

  • Le, My Huy Thuc;Lau, Seng Fong;Ibrahim, Norliza;Hayaty, Abu Kasim Noor;Radzi, Zamri Bin
    • The korean journal of orthodontics
    • /
    • v.48 no.2
    • /
    • pp.98-106
    • /
    • 2018
  • Objective: This study aimed to explore the usefulness of adjunctive buccal and palatal corticotomy for adult maxillary expansion in an animal model using cone-beam computed tomography (CBCT). Methods: Twelve adult sheep were randomly divided into two groups (each n = 6): a control group, where no treatment was administered, and a treatment group, where buccal and palatal corticotomy-assisted maxillary expansion was performed. CBCT scans were taken before (T1) and after (T2) treatment. Differences in all transverse dental and alveolar dimensions, alveolar width at crest level, hard palate level, horizontal bone loss, interdental cusp width and inter-root apex were assessed using Wilcoxon signed-rank and Mann-Whitney U-tests. Kruskal-Wallis tests and pairwise comparisons were used to detect the significance of differences among the inter-premolar and inter-molar widths. Results: CBCT data revealed significant changes in all transverse dental and alveolar dimensions. The mean interpremolar alveolar width showed an increase of 2.29 to 3.62 mm at the hard palate level, 3.89 to 4.38 mm at the alveolar crest level, and 9.17 to 10.42 mm at the buccal cusp level. Dental changes in the vertical dimension were not significant. Conclusions: Our findings based on an adult animal model suggest that adjunctive buccal and palatal corticotomy can allow for both skeletal and dental expansion, with the amount of dental expansion exceeding that of skeletal expansion at alveolar crest and hard palate levels by two and three folds, respectively. Therefore, this treatment modality is potential to enhance the outcomes of maxillary expansion in adults.

Application of the foramina of the trigeminal nerve as landmarks for analysis of craniofacial morphology

  • Lim, Ba-Da;Choi, Dong-Soon;Jang, Insan;Cha, Bong-Kuen
    • The korean journal of orthodontics
    • /
    • v.49 no.5
    • /
    • pp.326-337
    • /
    • 2019
  • Objective: The objective of this study was to develop new parameters based on the foramina of the trigeminal nerve and to compare them with the conventional cephalometric parameters in different facial skeletal types. Methods: Cone-beam computed tomography (CBCT) scans and cephalograms from 147 adult patients (57 males and 90 females; mean age, 26.1 years) were categorized as Class I ($1^{\circ}$ < ANB < $3^{\circ}$), Class II (ANB > $5^{\circ}$), and Class III (ANB < $-1^{\circ}$). Seven foramina in the craniofacial area-foramen rotundum (Rot), foramen ovale (Ov), infraorbital foramen, greater palatine foramen, incisive foramen (IF), mandibular foramen (MDF), and mental foramen (MTF)-were identified in the CBCT images. Various linear, angular, and ratio parameters were compared between the groups by using the foramina, and the relationship between the new parameters and the conventional cephalometric parameters was assessed. Results: The distances between the foramina in the cranial base did not differ among the three groups. However, the Rot-IF length was shorter in female Class III patients, while the Ov-MTF length, MDF-MTF length, and Ov-MDF length were shorter in Class II patients than in Class III patients of both sexes. The MDF-MTF/FH plane angle was larger in Class II patients than in Class III patients of both sexes. Most parameters showed moderate to high correlations, but the Ov-MDF-MTF angle showed a relatively low correlation with the gonial angle. Conclusions: The foramina of the trigeminal nerve can be used to supplement assessments based on the conventional skeletal landmarks on CBCT images.

Comparison of using CBCT with CT simulator for radiation dose of treatment planning (CBCT와 Simulation CT를 이용한 치료계획의 선량비교)

  • Cho, jung-keun;Kim, dae-young;Han, tae-jong
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2009.05a
    • /
    • pp.1159-1166
    • /
    • 2009
  • The use of cone-beam computed tomography(CBCT) has been proposed for guiding the delivery of radiation therapy. A kilovoltage imaging system capable of radiography, fluoroscopy, and cone-beam computed tomography(CT) has been integrated with a medical linear accelerator. A standard clinical linear accelerator, operating in arc therapy mode, and an amorphous-silicon (a-Si) with an on-board electronic portal imager can be used to treat palliative patient and verify the patient's position prior to treatment. On-board CBCT images are used to generate patient geometric models to assist patient setup. The image data can also, potentially, be used for dose reconstruction in combination with the fluence maps from treatment plan. In this study, the accuracy of Hounsfield Units of CBCT images as well as the accuracy of dose calculations based on CBCT images of a phantom and compared the results with those of using CT simulator images. Phantom and patient studies were carried out to evaluate the achievable accuracy in using CBCT and CT stimulator for dose calculation. Relative electron density as a function of HU was obtained for both planning CT stimulator and CBCT using a Catphan-600 (The Phantom Laboratory, USA) calibration phantom. A clinical treatment planning system was employed for CT stimulator and CBCT based dose calculations and subsequent comparisons. The dosimetric consequence as the result of HU variation in CBCT was evaluated by comparing MU/cCy. The differences were about 2.7% (3-4MU/100cGy) in phantom and 2.5% (1-3MU/100cGy) in patients. The difference in HU values in Catphan was small. However, the magnitude of scatter and artifacts in CBCT images are affected by limitation of detector's FOV and patient's involuntary motions. CBCT images included scatters and artifacts due to In addition to guide the patient setup process, CBCT data acquired prior to the treatment be used to recalculate or verify the treatment plan based on the patient anatomy of the treatment area. And the CBCT has potential to become a very useful tool for on-line ART.)

  • PDF

A three-dimensional finite element analysis of the relationship between masticatory performance and skeletal malocclusion

  • Park, Jung-Chul;Shin, Hyun-Seung;Cha, Jung-Yul;Park, Jong-Tae
    • Journal of Periodontal and Implant Science
    • /
    • v.45 no.1
    • /
    • pp.8-13
    • /
    • 2015
  • Purpose: The aim of this study was to evaluate the transfer of different occlusal forces in various skeletal malocclusions using finite element analysis (FEA). Methods: Three representative human cone-beam computed tomography (CBCT) images of three skeletal malocclusions were obtained from the Department of Orthodontics, Yonsei University Dental Hospital, Seoul, South Korea. The CBCT scans were read into the visualization software after separating bones and muscles by uploading the CBCT images into Mimics (Materialise). Two separate three-dimensional (3D) files were exported to visualize the solid morphology of skeletal outlines without considering the inner structures. Individual dental impressions were taken and stone models were scanned with a 3D scanner. These images were integrated and occlusal motions were simulated. Displacement and Von Mises stress were measured at the nodes of the FEA models. The displacement and stress distribution were analyzed. FEA was performed to obtain the 3D deformation of the mandibles under loads of 100, 150, 200, and 225 kg. Results: The distortion in all three skeletal malocclusions was comparable. Greater forces resulted in observing more distortion in FEA. Conclusions: Further studies are warranted to fully evaluate the impact of skeletal malocclusion on masticatory performance using information on muscle attachment and 3D temporomandibular joint movements.