• 제목/요약/키워드: Cone Angle

검색결과 380건 처리시간 0.023초

머신러닝기법을 이용한 산사태 발생인자의 영향도 분석 (Machine-Learning Evaluation of Factors Influencing Landslides)

  • 박성용;문성우;최재완;서용석
    • 지질공학
    • /
    • 제31권4호
    • /
    • pp.701-718
    • /
    • 2021
  • 본 연구에서는 산사태가 다수 발생한 충주 산척면 지역을 대상으로 야외지질조사 및 일련의 실내시험을 수행하여 데이터를 취득하고, 이후 인공신경망(Artificial neural network)과 로지스틱 회귀분석(Logistic regression)을 적용하여 각 인자가 산사태 발생에 미치는 영향도를 분석하였다. 야외지질조사 시 산사태 발생 유무에 따라 불교란시료를 채취하였으며, 동적 콘 관입시험기를 이용하여 토심을 측정하였다. 실내시험은 미국 표준시험법인 ASTM 규정에 따라 진행되었으며, 인자간 다중공선성을 해결하기 위해 VIF(Variation inflation factor)를 산정하였다. 다중공선성 분석을 통해 총 9개 인자(전단강도, 암종, 토심, 포화함수비, 비중, 투수계수, USCS, 사면 경사, 고도)가 분석에 적용되었다. 추후 도출되는 각 인자별 영향도를 직접적으로 비교하기 위해서 데이터는 최소값 0, 최대값 1이 되도록 최소-최대 정규화한 후 로지스틱 회귀분석 및 인공신경망 분석에 적용되었다. 로지스틱 회귀분석 결과, 토심, 경사, 포화함수비, 전단강도 순으로 산사태 발생에 영향력이 크게 나타났으며, 인공신경망 분석 결과, 경사, 토심, 포화함수비, 전단강도 순으로 영향력이 크게 나타났다. 각 분석기법으로 산정된 영향도를 산술평균한 결과, 토심, 경사, 포화함수비, 전단강도가 상위 4개 인자로 선정되었으며, 이들의 영향도 합계는 약 70%로 분석되었다.

중앙 분사방식의 직분식 가솔린 기관에서 연료 혼합기 형성에 미치는 분사시기와 캐비티 형상의 영향 (The Effect of Injection Timing and Cavity Geometry on Fuel Mixture Formation in a Central Injected DI Gasoline Engine)

  • 김태안;강정중;김덕줄
    • 한국자동차공학회논문집
    • /
    • 제12권2호
    • /
    • pp.32-38
    • /
    • 2004
  • This study was performed to investigate the behavior of liquid and vapor phase of fuel mixtures with different piston cavity diameters in a optically accessible engine. The conventional engine was modified as Central Injected DI gasoline engine with swirl motion. Two dimensional spray fluorescence images of liquid and vapor phase were acquired to analyze spray behavior and fuel distribution inside of cylinder using exciplex fluorescence method. Piston cavity geometries were set by Type S, M and L. The results obtained are as follows. In the spray formation after SOI, the cone angle and width of the spray were decreased at late injection timing. With a fuel injection timing of BTDC $180^{\circ}C$, fuel was not greatly affected in a piston cavity but generally distributed as homogeneous mixture in the cylinder. With a fuel injection timings of BTDC $90{\circ}C$ and $60^{\circ}C$, fuel mixture was widely distributed in near the cavity center. As a injection timing was late in the compression stroke, residual width of fuel mixture was narrow in proportion to piston cavity.

Investigation of the vibration of lattice composite conical shells formed by geodesic helical ribs

  • Nezamoleslami, Reza;Khadem, Siamak E.
    • Steel and Composite Structures
    • /
    • 제24권2호
    • /
    • pp.249-264
    • /
    • 2017
  • In this paper free linear vibration of lattice composite conical shells will be investigated. Lattice composite conical shell consists of composite helical ribs and thin outer skin. A smeared method is employed to obtain the variable coefficients of stiffness of conical shell. The ribs are modeled as a beam and in addition to the axial loads, endure shear loads and bending moments. Therefore, theoretical formulations are based on first-order shear deformation theory of shell. For verification of the obtained results, comparison is made with those available in open literature. Also, using FEM software the 3D finite element model of composite lattice conical shell is built and analyzed. Comparing results of analytical and numerical analyses show a good agreement between them. Some special cases as variation of geometric parameters of lattice part, effect of the boundary conditions and influence of the circumferential wave numbers on the natural frequencies of the conical shell are studied. It is concluded, when mass and the geometrical ratio of the composite lattice conical shell do not change, increment the semi vertex angle of cone leads to increase the natural frequencies. Moreover for shell thicknesses greater than a specific value, the presence of the lattice structure has not significant effect on the natural frequencies. The obtained results have novelty and can be used for further and future researches.

대마직물(안동포)의 방추가공에 관한 연구 (Study of Crease Resistant Finish on Hemp Fabrics(Andongpo))

  • 최희;김용;홍성학
    • 한국의류산업학회지
    • /
    • 제6권2호
    • /
    • pp.229-233
    • /
    • 2004
  • Andongpo, 100% Korean hemp fabric was treated with the glyoxale resin type finishing agent and/or the soluble urethane type finishing agent to determine the optimum process condition of the crease resistant finish and the crease recovery of treated sample fabrics was evaluated for the study. The treatment conditions for the study were 6 conditions, such as, A-1~A-6, in which A-1 was the condition of treatment glyoxale resin type finishing agent only and A-2~A-6 were the condition of treatment both glyoxale resin type finishing agent and soluble urethane type finishing agent. Among the 6 conditions, the crease recovery of the sample treated with A-4 condition was $148^{\circ}$(angle of recovery method) and grade 3.2(appearance method) and so, these samples showed the excellent crease recovery. From the result, 15g/l of the catalyst conc., 50g/l of the glyoxale resin type finishing agent cone., and 40g/l of the softner were the optimum treatment condition for the crease resistant finish of the andongpo.

저압 TBI용 분사밸브의 분무특성에 관한 연구 (I) (Study on the Spray Characteristics in TBI Injector with Low Pressure)

  • 전흥신;임종한;이택희
    • 대한기계학회논문집
    • /
    • 제17권12호
    • /
    • pp.3179-3186
    • /
    • 1993
  • The study on the spray characteristics of TBI(Throttle Body Injection) injector has been carried out in this paper. The objective of this study is to improve the performance of TBI injector. The increase in the injection pressure and the utilization of assisted air are considered. The spray patten of TBI injector take the hollow-cone shape with $60^{\circ}~70^{\circ}$ spray angle regardless of injection pressure and injection pulse width. SAMD(Sauter Mean Diameter) of water in TBI injector are 510-$550{\mu}m$ and 310-$370{\mu}m$ respectively when injection pressures are $0.75 kgf/cm^{2}$ and $2.8 kgf/cm^{2}$. Then SMD of gasoline is estimated 380~$410{\mu}m$ and 230~$280{\mu}m$ respectively. The improvement of spray characteristics in TBI injector can be obtained with assisted air. If $W_{A}/W_{L}$ was over 0.2, SMD of water can be made under $50{\mu}m$.

Dimethyl Ether(DME) 연료의 분무 거동 및 미립화 특성 (Macroscopic Behavior and Atomization Characteristics of Dimethyl Ether)

  • 서현규;박지홍;이창식
    • 한국자동차공학회논문집
    • /
    • 제15권5호
    • /
    • pp.30-37
    • /
    • 2007
  • Dimethyl Ether(DME) is an alternative fuel for diesel engine, it is renewable and offers potential reductions in emissions. This work was conducted to figure out the macroscopic behavior and the atomization characteristics of DME using a common-rail injection system. The macroscopic behavior was visualized with the spray visualization system composed of a Nd;YAG laser and an ICCD camera. The atomization characteristics were investigated in terms of axial mean velocity, Sauter mean diameter(SMD) and droplet distributions obtained from a phase Doppler particle analyzer(PDPA) system. In this study, it was revealed that the macroscopic behavior and the atomization characteristics of DME are similar compared with commercial diesel fuel. However, DME fuel has a shorter spray tip penetration and a small SMD due to the effect of evaporation characteristics.

폐식용유 바이오디젤 연료의 분무특성에 관한 연구 (A Study on Spray Characteristics of Biodiesel Derived from Waste Cooking Oil)

  • 안상연;김웅일;이창식
    • 한국분무공학회지
    • /
    • 제18권4호
    • /
    • pp.182-187
    • /
    • 2013
  • This study was performed to investigate the effect of biodiesel derived from waste cooking oil on the spray behavior and macroscopic spray characteristics. To analyze quantitative characteristics of test fuels, injection quantity was measured at various injection pressures and the spray images of injected fuels in the pressurized chamber were obtained by using a high speed camera and image analysis system. Based on the measured spray images, the spray tip penetration and spray cone angle were investigated at various energizing timings and injection pressures. In this work, the experimental results showed that the injection quantity of waste cooking biodiesel indicated the higher quantities than diesel at high injection pressure. As the injection pressure was increased, the spray tip penetrations of biodiesel were higher value than diesel. The difference of penetration between biodiesel and conventional diesel fuel was reduced in accordance with the increase of injection pressure. Also, the spray angles of diesel were larger than that of biodiesel because diesel fuel has lower viscosity than biodiesel. In addition, the spray evolution processes of biodiesel fuel at various injection pressures and the elapsed time after the injection were compared to the conventional diesel fuel.

THE FORMATION OF THE DOUBLE GAUSSIAN LINE PROFILES OF THE SYMBIOTIC STAR AG PEGASI

  • Hyung, Siek;Lee, Seong-Jae
    • 천문학회지
    • /
    • 제53권2호
    • /
    • pp.35-42
    • /
    • 2020
  • We analyze high dispersion emission lines of the symbiotic nova AG Pegasi, observed in 1998, 2001, and 2002. The Hα and Hβ lines show three components, two narrow and one underlying broad line components, but most other lines, such as HI, HeI, and HeII lines, show two blue- and red-shifted components only. A recent study by Lee & Hyung (2018) suggested that the double Gaussian lines emitted from a bipolar conical shell are likely to form Raman scattering lines observed in 1998. In this study, we show that the bipolar cone with an opening angle of 74°, which expands at a velocity of 70 km s-1 along the polar axis of the white dwarf, can accommodate the observed double line profiles in 1998, 2001, and 2002. We conclude that the emission zone of the bipolar conical shell, which formed along the bipolar axis of the white dwarf due to the collimation by the accretion disk, is responsible for the double Gaussian profiles.

Determination of Diesel Sprays Characteristics in Real Engine In-Cylinder air Density and Pressure Conditions

  • Payri Raul;Salvador F. J.;Gimeno J;Soare V.
    • Journal of Mechanical Science and Technology
    • /
    • 제19권11호
    • /
    • pp.2040-2052
    • /
    • 2005
  • The present paper centers on the establishment of a quantified relationship between the macroscopic visual parameters of a Diesel spray and its most influential factors. The factors considered are the ambient gas density, as an external condition relative to the injection system, and nozzle hole diameter and injection pressure as internal ones. The main purpose of this work is to validate and extend the different correlations available in the literature to the present state of the Diesel engine, i.e. high injection pressure, small nozzle holes, severe cavitating conditions, etc. Five mono-orifice, axi-symmetrical nozzles with different diameters have been studied in two different test rigs from which one can reproduce solely the real engine in-cylinder air density, and the other, both the density and the pressure. A parametric study was carried out and it enabled the spray tip penetration to be expressed as a function of nozzle hole diameter, injection pressure and environment gas density. The temporal synchronization of the penetration and injection rate data revealed a possible explanation for the discontinuity observed as well by other authors in the spray's penetration law. The experimental results obtained from both test rigs have shown good agreement with the theoretical analysis. There have been observed small but consistent differences between the two test rigs regarding the spray penetration and cone angle, and thus an analysis of the possible causes for these differences has also been included.

상계법과 유한요소법을 이용한 확관금형 설계 (Design of Pipe Expanding Die by Upper Bound Analysis and Finite Element Method)

  • 조용일;김승환;추연근;조해용
    • 한국기계가공학회지
    • /
    • 제19권5호
    • /
    • pp.98-104
    • /
    • 2020
  • Pipe expansion involves various methods to enlarge the diameter of the pipes with the use of a mandrel or punch placed inside the pipe. In this study, the upper bound method was used to analyze the pipe expanding process as well as design a die. A kinematically admissible velocity field was derived for the upper bound analysis with the occurrence of pipe thinning during the expansion factored in. The analysis confirms that a semi-cone angle of the punch between 15ween pip is most advantageous for pipe expansion. The results of the upper bound analysis, which were also consistent with those of the FEM, can be useful for the design of a pipe expansion die.