• Title/Summary/Keyword: Conduit

Search Result 457, Processing Time 0.023 seconds

A Study on the Distribution Characteristics of Invasive Alien Plants in Ulsan City, South Korea (울산광역시 침입외래식물의 분포 현황과 특성에 관한 연구)

  • Lee, Yunkeun;Moon, Kyoung-hi;Lim, Ha-woo;Choi, Kee-ryong
    • Korean Journal of Ecology and Environment
    • /
    • v.52 no.2
    • /
    • pp.161-170
    • /
    • 2019
  • Invasive alien plants were identified and recorded in Ulsan city based on field surveys and related literatures. These plants consisted of 147 taxa in total, belonging to 30 families, 93 genera, 144 species, 2 subspecies and 1 variant. The family of Asteraceae was predominant with 42 taxa, followed by Gramineae with 27 taxa and Leguminosae with 15 taxa. According to the result of life-form based distribution analysis revealed that 62 taxa (42.2%) were annual plants, 48 taxa (33.6%) were perennial plants, 34 taxa (23.1%) were biennial plants, and 3 taxa (2%) were woody perennials. Compare to other administrative districts in Korea, prevalence of invasive alien plants in a certain city of Ulsan showed the seventh highest species number followed after Jeju, Gyeonggi, Jeonnam, Incheon, Seoul and Gangwon. On the basis of the results from the country origin analysis, two dominating taxa were introduced from Europe and America, 55 taxa and 51 taxa respectively. The spreading grade of alien plants was elucidated in order of 1 grade (PS) 67 grade (21.1%)>2 grade (MS) 31 taxa (21.1%)>5 grade (WS) 18 taxa (11.6%)>3 grade (CS) 17 taxa (11.6%)>4 grade (SS) 14 taxa (9.5%). Ulsan city is one of a pivotal conduit for the introduction of invasive alien plants. Thereby, reliable management plans are required to monitor these species.

Vascular Injuries Due to Penetrating Missile Trauma in Anti-Terrorism Ops

  • Dhillan, Rishi;Bhalla, Alok;Kumar Jha, Sushil;Singh, Hakam;Arora, Aman
    • Journal of Trauma and Injury
    • /
    • v.32 no.2
    • /
    • pp.93-100
    • /
    • 2019
  • Purpose: Penetrating vascular trauma though less common poses a challenge to all Surgeons. This study was designed to analyse the profile, management modalities of vascular trauma and the outcomes thereof at a Trauma Care Centre in a Tertiary care setting in hostile environment in India. Methods: A prospective review of all patients with arterial and venous injuries being transferred to the Trauma Center at out Tertiary Care Center between June 2015 and May 2018 was done. Demographics, admission data, treatment, and complications were reviewed. Results: There were a total of 46 patients with 65 vascular injuries, 39 arterial injuries and 26 venous injuries. The age range was 21 to 47 years. Nineteen patients had both arterial and venous injuries. A total of 42 cases presented within 12 hours of injury and complete arterial transections were found in 33 cases (80.49%). There were three mortalities (6.52%) and three amputations (8.33%). The overall limb salvage rate was 91.67% with popliteal artery being the commonest injured artery. Poor prognosticators for limb salvage were increasing time to present to the trauma centre, hypovolemic shock, multi-organ trauma and associated venous injuries. Conclusions: Penetrating missile trauma leading to vascular injuries has not been widely reported. Attempting limb salvage even in cases with delayed presentation should be weighed with the threat to life before revascularisation and should preferably be done at a centre with vascular expertise. A team approach with vascular, orthopaedic, general surgeons, and critical care anaesthesiologists all aboard improve the outcomes manifold. Use of tourniquets and early fasciotomies have been emphasized as is the use of native veins as the bypass conduit. This is probably the largest study on penetrating Vascular trauma in anti-terrorism ops from the Indian subcontinent. It highlights the significance of prompt recognition and availability of vascular expertise in optimally managing cases of vascular trauma.

Comparison of EU-DEMO React & Wind Nb3Sn TF CICC current sharing temperature against Wind & React Nb3Sn CICCs

  • Kwon, Soun P.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.24 no.2
    • /
    • pp.7-18
    • /
    • 2022
  • European efforts to design superconducting conductors for a future tokamak have involved Nb3Sn cable-in-conduit conductor (CICC). Nb3Sn coils which undergo heat treatment to activate the Nb3Sn material are mostly produced through the wind-then-react route. However, some Nb3Sn coils have been proposed with CICCs of the react-then-wind route. The latter CICCs are physically constrained due to handling limitations which if not adhered to will result in irrecoverable damage to the Nb3Sn cable inside, nullifying any performance advantage. A group at the Swiss Plasma Center has proposed such CICC designs, constructing samples and testing them for performance. The characteristics and performance of these react & wind (R&W) CICCs are compared with the more common wind & react (W&R) CICCs, and it is found that the R&W designs show more extreme characteristics than typical W&R Nb3Sn CICCs for some parameters that are known to influence CICC performance. Where the R&W CICCs extend the range of those parameters, they also continue trends formed by the W&R CICCs with the parameters. The main observation, however, is that although the current sharing temperature performances of the R&W samples are above the average of the W&R samples they were compared to, they are not the highest. A similar observation applies to a cost comparison of the superconducting material where the R&W CICCs are found to be relatively cheap but not the cheapest. Given these results, clear practical advantages to the R&W CICC design is not evident.

Intercellular transport across pit-connections in the filamentous red alga Griffithsia monilis

  • Kim, Gwang Hoon;Nagasato, Chikako;Kwak, Minseok;Lee, Ji Woong;Hong, Chan Young;Klochkova, Tatyana A.;Motomura, Taizo
    • ALGAE
    • /
    • v.37 no.1
    • /
    • pp.75-84
    • /
    • 2022
  • Intercellular nutrient and signal transduction are essential to sustaining multicellular organisms and maximizing the benefits of multicellularity. It has long been believed that red algal intercellular transport of macromolecules is prevented by the protein-rich pit plug within pit-connections, the only physical connection between cells. Fluorescein isothiocyanate-dextran and recombinant green fluorescence protein (rGFP) of various molecular sizes were injected into vegetative cells of Griffithsia monilis using a micromanipulator, and intercellular transport of the fluorescent probes was examined. Pit-connections were found to provide intercellular transport of tracers at rates comparable to plasmodesmata in other organisms. The time necessary for the transport to an adjacent cell was dependent on the molecular size and the direction of the transport. Fluorescent dextran of 3 kDa was transported to adjacent cells in 1-2 h after injection and migrated to all cells of the filament within 24 h, but fluorescent dextran of 10-20 kDa took 24 h to transfer to neighboring cells. The migration occurred faster towards adjacent reproductive cells and to apical cells than basally. Fluorescent tracers above 40 kDa and rGFP was not transported to neighboring cells, but accumulated near the pit plug. Our results suggest that pit-connections are conduit for macromolecules between neighboring cells and that these size-specific conduits allow intercellular communication between the vegetative cells of red algae.

Postcolonial Media Piracy Studies and Intellectual Property Regime as Global Control System

  • Yoon, Sangkil;Kim, Sanghyun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.9
    • /
    • pp.91-100
    • /
    • 2022
  • The purpose of this study is to critically review the global intellectual property regime, which has been in full swing since the mid-1990s, from the perspective of postcolonialism. More specifically, by looking at issues which were raised by the Postcolonial Piracy Studies, it attempted to relativize the global IP system. This paper confirmed the postcolonialist view that universal concepts could never be completely universal or pure, and confirmed the non-state legalities view of media piracy as a conduit for participation in the global network through 'porous legalities' concept of Lawrence Liang. Finally, this paper raised the need to understand various relationships between the informal media economy and the formal media economy in a balanced perspective, rather than relying only on the neat dichotomy logic of illegality/legal.

Pressure Drop Analysis on Filling of Hydrogen Fuel Cell Vehicles (수소연료전지 차량 충전에서의 압력강하 분석)

  • Hyo Min Seo;Byung Heung Park
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.1
    • /
    • pp.38-47
    • /
    • 2023
  • In the hydrogen filling process, hydrogen flows by the pressure difference between the supply pressure at a filling station and a storage tank in the vehicle, and the flow rate depends on the pressure difference. Therefore, it is essential to consider the pressure drop of hydrogen occurring during the filling process, and the efficiency of the hydrogen filling process can be improved through its analysis. In this study, the pressure drop was analyzed for a hose, a nozzle/receptacle coupling, a pipe, and a valve in a filling line. The pressure drops through hose and pipe, the nozzle,receptacle coupling, and the valve were calculated by using a equation for a straight conduit, a flow nozzle formula, and a gas flow respectively. In addition, as a result of comprehensive analysis of the pressure drop effect occurring in each component, it was found that the factor that has the greatest influence on the pressure drop in the entire filling line is the pressure drop through the valve. This study can be used to develop a model of the hydrogen filling process by analyzing hydrogen flow including hydrogen filling in the future.

Combined bi-borehole technology for grouting and blocking of flowing water in karst conduits: Numerical investigation and engineering application

  • Pan, Dongdong;Zhang, Yichi;Xu, Zhenhao;Li, Haiyan;Li, Zhaofeng
    • Geomechanics and Engineering
    • /
    • v.29 no.4
    • /
    • pp.391-405
    • /
    • 2022
  • A newly proposed grouting simulation method, the sequential diffusion solidification method was introduced into the numerical simulation of combined bi-borehole grouting. The traditional, critical and difficult numerical problem for the temporal and spatial variation simulation of the slurry is solved. Thus, numerical simulation of grouting and blocking of flowing water in karst conduits is realized and the mechanism understanding of the combined bi-borehole technology is promoted. The sensitivity analysis of the influence factors of combined bi-borehole grouting was investigated. Through orthogonal experiment, the influences of proximal and distal slurry properties, the initial flow velocity of the conduit and the proximal and distal slurry injection rate on the blocking efficiency are compared. The velocity variation, pressure variation and slurry deposition phenomenon were monitored, and the flow field characteristics and slurry outflow behavior were analyzed. The interaction mechanism between the proximal and distal slurries in the combined bi-borehole grouting is revealed. The results show that, under the orthogonal experiment conditions, the slurry injection rate has the greatest impact on blocking. With a constant slurry injection rate, the blocking efficiency can be increased by more than 30% when using slurry with weak time-dependent viscosity behavior in the distal borehole and slurry with strong time-dependent viscosity behavior in the proximal borehole respectively. According to the results of numerical simulation, the grouting scheme of "intercept the flow from the proximal borehole by quick-setting slurry, and grout cement slurry from the distal borehole" is put forward and successfully applied to the water inflow treatment project of China Resources Cement (Pingnan) Limestone Mine.

Development of an Integrated Electrode-bipolar Plate Assembly with Reduced Contact Resistance for Vanadium Redox Flow Battery (바나듐 레독스 흐름전지용 접촉저항 감소 일체형 전극-분리판 조립체 개발)

  • Amanpreet Kaur;Jun Woo Lim
    • Composites Research
    • /
    • v.37 no.3
    • /
    • pp.190-196
    • /
    • 2024
  • The bipolar plate is a crucial element of the vanadium redox flow battery (VRFB) as it serves as both the electrical conduit and the structural support for the cell within the VRFB stack. Although, the graphite material is primarily used for the bipolar plate due to its excellent electrical conductivity, a significant limitation of performance of the VRFB is present due to high interfacial contact resistance (ICR) arises between the electrode and bipolar plate in the cell stack. This study aims to develop an integrated electrode-bipolar plate assembly that will address the limitations of the ICR. The integrated assembly was constructed using a single carbon felt with thermoplastic and thermoset polymers utilizing hot press method. Experimental results verify that the bipolar plate assembly exhibits reduced area specific resistance (ASR) due to the continuous electrical path. Additionally, from the charge/discharge cell test results, the integrated assembly shows improved cell performance. Therefore, the developed integrated electrode-bipolar plate assembly can serve as a substitute for the conventional bipolar plate and electrode assembly.

Applications of a Deep Neural Network to Illustration Art Style Design of City Architectural

  • Yue Wang;Jia-Wei Zhao;Ming-Yue Zheng;Ming-Yu Li;Xue Sun;Hao Liu;Zhen Liu
    • Journal of Information Processing Systems
    • /
    • v.20 no.1
    • /
    • pp.53-66
    • /
    • 2024
  • With the continuous advancement of computer technology, deep learning models have emerged as innovative tools in shaping various aspects of architectural design. Recognizing the distinctive perspective of children, which differs significantly from that of adults, this paper contends that conventional standards may not always be the most suitable approach in designing urban structures tailored for children. The primary objective of this study is to leverage neural style networks within the design process, specifically adopting the artistic viewpoint found in children's illustrations. By combining the aesthetic paradigm of urban architecture with inspiration drawn from children's aesthetic preferences, the aim is to unearth more creative and subversive aesthetics that challenge traditional norms. The selected context for exploration is the landmark buildings in Qingdao City, Shandong Province, China. Employing the neural style network, the study uses architectural elements of the chosen buildings as content images while preserving their inherent characteristics. The process involves artistic stylization inspired by classic children's illustrations and images from children's picture books. Acting as a conduit for deep learning technology, the research delves into the prospect of seamlessly integrating architectural design styles with the imaginative world of children's illustrations. The outcomes aim to provide fresh perspectives and effective support for the artistic design of contemporary urban buildings.

Modeling and simulation of air-water upward annular flow characteristics in a vertical tube using CFD

  • Anadi Mondal;Subash L Sharma
    • Nuclear Engineering and Technology
    • /
    • v.56 no.7
    • /
    • pp.2881-2892
    • /
    • 2024
  • Annular flow refers to a special type of two-phase flow pattern in which liquid flows as a thin film at the periphery of a pipe, tube, or conduit, and gas with relatively high velocity flows at the center of the flow section. This gas also includes dispersed liquid droplets. The liquid film flow rate continuously changes inside the tube due to two processes-entrainment and deposition. To determine the liquid holdup, pressure drop, the onset of dryout, and heat transfer characteristics in annular flow, it is important to have proper knowledge of flow characteristics. Especially a better understanding of entrainment fraction is important for the heat transfer and safe operation of two-phase flow systems operating in an annular two-phase flow regime. Therefore, the objective of this work is to develop a computational model for the simulation of the annular two-phase flow regime and assess the various existing models for the entrainment rate. In this work, Computational Fluid Dynamics (CFD) in ANSYS FLUENT has been applied to determine annular flow characteristics such as liquid film thickness, film velocity, entrainment rate, deposition rate, and entrainment fraction for various gas-liquid flow conditions in a vertical upward tube. The gas core with droplets was simulated using the Discrete Phase Model (DPM) which is based on the Eulerian-Lagrangian approach. The Eulerian Wall Film (EWF) model was utilized to simulate liquid film on the tube wall. Three different models of Entrainment rate were implemented and assessed through user-defined functions (UDF) in ANSYS. Finally, entrainment for fully developed flow was determined and compared with the experimental data available in the literature. From the simulations, it was obtained that the Bertodano correlation performed best in predicting entrainment fraction and the results were within the ±30 % limit when compared to experimental data.