• Title/Summary/Keyword: Conductive powder

Search Result 145, Processing Time 0.025 seconds

The Preparation of Copper Powder Using Solvothermal Process and Its Application as EMI Shielding Agent (솔보써말 방법을 이용한 구리분말 제조 및 전자파 차폐제로의 응용)

  • Lee, Hyo-Won;Kim, Soo-Ryong;Kwon, Woo-Teck;Choi, Duck-Kyun;Kim, Young-Hee
    • Korean Journal of Materials Research
    • /
    • v.16 no.5
    • /
    • pp.285-291
    • /
    • 2006
  • Copper powders have been widely used in electrically conductive coatings, electrode materials et al. and are very prospective since they are cheaper than noble metal powders such as silver or palladium. In this study, copper powders for metal filler of EMI shielding have been prepared using a solvothermal process from $CuSO_4$, NaOH, Glucose, mixed solvent ($H_2O$: Ethanol) and hydrazine which was used as a reducing agent at various reaction conditions. The prepared copper powders showed finely dispersed spherical shape without agglomerate, uniform morphology, narrow size distribution, high purity and were about 400-700 nm in size. The prepared powders were characterized using XRD, SEM, TGA, XPS, particle size measurement and EMI shielding efficiency.

Composite Membrane Containing a Proton Conductive Oxide for Direct Methanol Fuel Cell

  • Peck, Dong-Hyun;Cho, Sung-Yong;Kim, Sang-Kyung;Jung, Doo-Hwan;Kim, Jeong-Soo
    • Journal of the Korean Electrochemical Society
    • /
    • v.11 no.1
    • /
    • pp.11-15
    • /
    • 2008
  • The composite membrane for direct methanol fuel cell (DMFC) was developed using $H_3O^+-{\beta}"-Al_2O_3$ powder and perfluorosulfonylfluroride copolymer (Nafion) resin. The perfluorosulfonylfluroride copolymer (Nafion) resin was mixed with $H_3O^+-{\beta}"-Al_2O_3$ powder and it was made to sheet form by hot pressing. The electrodes were prepared with 60 wt% PtRu/C and 60wt% Pt/C catalysts for anode and cathode, respectively. The morphology and the chemical composition of the composite membrane have been investigated by using SEM and EDXA, respectively. The composite membrane and $H_3O^+-{\beta}"-Al_2O_3$ were analyzed by using FT-IR and XRD. The methanol permeability of the composite membranes was also measured by gas chromatography (GC). The performance of the MEA containing the composite membrane (2wt% $H_3O^+-{\beta}"-Al_2O_3$) was higher than that of normal pure Nafion membrane at high operating temperature (e.g. $110^{\circ}C$), due to the homogenous distribution of $H_3O^+-{\beta}"-Al_2O_3$, which decreased the methanol permeability through the membrane and enhanced the water contents in the composite membrane.

Microwave Absorbance of Polymer Composites Containing SiC Fibers Coated with Ni-Fe Thin Films

  • Liu, Tian;Kim, Sung-Soo;Choi, Woo-cheal;Yoon, Byungil
    • Journal of Powder Materials
    • /
    • v.25 no.5
    • /
    • pp.375-378
    • /
    • 2018
  • Conductive and dielectric SiC are fabricated using electroless plating of Ni-Fe films on SiC chopped fibers to obtain lightweight and high-strength microwave absorbers. The electroless plating of Ni-Fe films is achieved using a two-step process of surface sensitizing and metal plating. The complex permeability and permittivity are measured for the composite specimens with the metalized SiC chopped fibers dispersed in a silicone rubber matrix. The original non-coated SiC fibers exhibit considerable dielectric losses. The complex permeability spectrum does not change significantly with the Ni-Fe coating. Moreover, dielectric constant is sensitively increased with Ni-Fe coating, owing to the increase of the space charge polarization. The improvements in absorption capability (lower reflection loss and small matching thickness) are evident with Ni-Fe coating on SiC fibers. For the composite SiC fibers coated with Ni-Fe thin films, a -35 dB reflection loss is predicted at 7.6 GHz with a matching thickness of 4 mm.

Development of Carbon Composite Bipolar Plates for PEMFC (양성자 교환막 연료전지용 탄소 복합재료 분리판 개발)

  • Lim, Jun Woo
    • Composites Research
    • /
    • v.32 no.5
    • /
    • pp.222-228
    • /
    • 2019
  • The proton exchange membrane fuel cell (PEMFC) system has many potential uses as an environmentally friendly power source. Carbon fiber composite bipolar plates are highly corrosion resistant and have high specific strength and stiffness in acidic environments, however, the relatively low electrical conductivity is a major issue which reduces the efficiency of PEMFC. In this study, electrically conductive particles (graphite powder and carbon black) are applied to carbon-epoxy composite prepregs to reduce the electrical resistance of the bipolar plates. The electrical resistance and mechanical properties are measured using conventional test methods, and a unit cell performance evaluation of developed carbon composite bipolar plates is performed to compare with the conventional bipolar plate.

Research trends of MXenes as the Next-generation Two-dimensional Materials (차세대 2차원 소재, MXenes의 연구 동향)

  • Lee, Hojun;Yun, Yejun;Jang, Jinkwang;Byun, Jongmin
    • Journal of Powder Materials
    • /
    • v.28 no.2
    • /
    • pp.150-163
    • /
    • 2021
  • Interest in eco-friendly materials with high efficiencies is increasing significantly as science and technology undergo a paradigm shift toward environment-friendly and sustainable development. MXenes, a class of two-dimensional inorganic compounds, are generally defined as transition metal carbides or nitrides composed of few-atoms-thick layers with functional groups. Recently MXenes, because of their desirable electrical, thermal, and mechanical properties that emerge from conductive layered structures with tunable surface terminations, have garnered significant attention as promising candidates for energy storage applications (e.g., supercapacitors and electrode materials for Li-ion batteries), water purification, and gas sensors. In this review, we introduce MXenes and describe their properties and research trends by classifying them into two main categories: transition metal carbides and nitrides, including Ti-based MXenes, Mo-based MXenes, and Nb-based MXenes.

Synthesis of Nanoporous F:SnO2 Materials and its Photovoltaic Characteristic (나노 다공질 FTO 제작 및 광전변환특성 고찰)

  • Han, Deok-Woo;Sung, Youl-Moon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.1
    • /
    • pp.176-181
    • /
    • 2009
  • In this work, a new type of DSCs based on nanoporous FTO structure is being developed for research aimed at low-cost high-efficiency solar cell application. The nanoporous FTO materials have been prepared through the sol-gel combustion method followed by thermal treatment at $450{\sim}850[^{\circ}C]$. The properties of the nanoporous FTO materials were investigated by IR spectra, BET and TEM analyses, and the photovoltaic performance of the prepared DSCs were examined. It can be seen from the result that the nanoporous FTO exhibited good transparent conductive properties, well suited for DSCs application.

Dispersion Characteristics of Ag Pastes and Properties of Screen-printed Source-drain Electrodes for OTFTs (Ag Pastes의 분산 특성 및 스크린 인쇄된 OTFTs용 전극 물성)

  • Lee, Mi-Young;Nam, Su-Yong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.9
    • /
    • pp.835-843
    • /
    • 2008
  • We have fabricated the source-drain electrodes for OTFTs by screen printing method and manufactured Ag pastes as conductive paste. To obtain excellent conductivity and screen-printability of Ag pastes, the dispersion characteristics of Ag pastes prepared from two types of acryl resins with different molecular structures and Ag powder treated with caprylic acid, triethanol amine and dodecane thiol as surfactant respectively were investigated. The Ag pastes containing Ag powder treated with dodecane thiol having thiol as anchor group or AA4123 with carboxyl group(COOH) of hydrophilic group as binder resin exhibited excellent dispersity. But, Ag pastes(CA-41, TA-41, DT-41) prepared from AA4123 fabricated the insulating layer since the strong interaction between surface of Ag powder and carboxyl group(COOH) of AA4123 interfered with the formation of conduction path among Ag powders. The viscosity behavior of Ag pastes exhibited shear-thinning flow in the high shear rate range and the pastes with bad dispersion characteristic demonstrated higher shear-thinning index than those with good dispersity due to the weak flocculated network structure. The output curve of OTFT device with a channel length of 107 ${\mu}m$ using screen-printed S-D electrodes from DT-30 showed good saturation behavior and no significant contact resistance. And this device exhibited a saturation mobility of $4.0{\times}10^{-3}$ $cm^2/Vs$, on/off current ratio of about $10^5$ and a threshold voltage of about 0.7 V.

Bonding Strength of Conductive Inner-Electrode Layers in Piezoelectric Multilayer Ceramics

  • Wang, Yiping;Yang, Ying;Zheng, Bingjin;Chen, Jing;Yao, Jinyi;Sheng, Yun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.4
    • /
    • pp.181-184
    • /
    • 2017
  • Multilayer ceramics in which piezoelectric layers of $0.90Pb(Zr_{0.48}Ti_{0.52})O_3-0.05Pb(Mn_{1/3}Sb_{2/3})O_3-0.05Pb(Zn_{1/3}Nb_{2/3})O_3$ (0.90PZT-0.05PMS-0.05PZN) stack alternately with silver electrode layers were prepared by an advanced low-temperature co-fired ceramic (LTCC) method. The electrical properties and bonding strength of the multilayers were associated with the interface morphologies between the piezoelectric and silver-electrode layers. Usually, the inner silver electrodes are fabricated by sintering silver paste in multi-layer stacks. To improve the interface bonding strength, piezoelectric powders of 0.90PZT-0.05PMS-0.05PZN with an average particle size of $23{\mu}m$ were added to silver paste to form a gradient interface. SEM observation indicated clear interfaces in multilayer ceramics without powder addition. With the increase of piezoelectric powder addition in the silver paste, gradient interfaces were successfully obtained. The multilayer ceramics with gradient interfaces present greater bonding strength as well as excellent piezoelectric properties for 30~40 wt% of added powder. On the other hand, over addition greatly increased the resistance of the inner silver electrodes, leading to a piezoelectric behavior like that of bulk ceramics in multilayers.

Effects of Cr and Al Sputtered sheet for the Electromagnetic Shielding (전자차폐(電磁遮蔽)를 위한 크롬 및 알루미늄 스퍼터링의 효과)

  • Kim, Dong-Jin
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.73-79
    • /
    • 2001
  • In this paper, shielding effectiveness(SE) of the shielding material of electromagnetic(EM) waves was investigated with actual experiments. The materials used in this study were made up of sputtering, film and powder of conductive materials - Cr, Al, Ag and Cu etc. Also, the polyester film was used as a base material. The experiment was carried out by using a shielding evaluator(Shielding box) TR17302 with an ADVANTEST spectrum analyzer, model R3361C. It was found from the experimental results that silver, copper, aluminum and chromium were good candidates as a shielding material against the EM waves with increasing the SE as the composite was laminated. The characteristics of the SE against the EM waves depended on a mode of preparation of specimen. The effects of density of particles on the SE were studied when the sputtering. The SE strongly depended on the electric resistance by density of sputtering and painting particles. SE increased as the density of particles was increasing.

  • PDF

Electrochemical Properties of Graphite-based Electrodes for Redox Flow Batteries

  • Kim, Hyung-Sun
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.2
    • /
    • pp.571-575
    • /
    • 2011
  • Graphite-based electrodes were prepared using synthetic graphite (MCMB 1028) or natural graphite (NG) powder using a dimensionally stable anode (DSA) as a substrate. Their electrochemical properties were investigated in vanadiumbased electrolytes to determine how to increase the durability and improve the energy efficiency of redox flow batteries. Cyclic voltammetry (CV) was performed in the voltage range of -0.7 V to 1.6 V vs. SCE at various scan rates to analyze the vanadium redox reaction. The graphite-based electrodes showed a fast redox reaction and good reversibility in a highly concentrated acidic electrolyte. The increased electrochemical activity of the NG-based electrode for the $V^{4+}/V^{5+}$ redox reaction can be attributed to the increased surface concentration of functional groups from the addition of conductive material that served as a catalyst. Therefore, it is expected that this electrode can be used to increase the power density and energy density of redox flow batteries.