• Title/Summary/Keyword: Conductive Adhesive Film

Search Result 28, Processing Time 0.027 seconds

High Temperature Reliability Study of Anisotropic Conductive Adhesive for Electronic Components

  • Woo, Eun-Ju;Moon, Yu-Sung;Kim, Jung-Won
    • Journal of IKEEE
    • /
    • v.22 no.1
    • /
    • pp.193-196
    • /
    • 2018
  • In this study, we investigated the reliability of anisotropic conductive paste (ACP) and anisotropic conductive films (ACF), which are anisotropic conductive adhesives, applied to automotive touch panels. Adhesive material is also important as a key factor in assembling the touch panel. In order to measure the resistance change of the parts in two kinds of high temperature test, the reliability of the two types of anisotropic conductive adhesives was compared and evaluated through the results of the resistance change. For 615 hours of reliability testing, the anisotropic conductive film exhibited a higher stability in a high temperature environment than the anisotropic conductive paste.

Anisotropic Conductive Film (ACF) Prepared from Epoxy/Rubber Resins and Its Fabrication and Reliability for LCD

  • Kim, Jin-Yeol;Kim, Eung-Ryul;Ihm, Dae-Woo
    • Journal of Information Display
    • /
    • v.4 no.1
    • /
    • pp.17-23
    • /
    • 2003
  • A thermoset type anisotropic conductive adhesive film (ACAF) comprising epoxy resin and natural butyl rubber (NBR) as the binder, micro-encapsulated imidazole as the curing agent, and Ni/Au coated polymer bead as a conductive particle has been studied. These films have been prepared to respond to requirements such as improved contact resistance, current status less of than 60 ${\mu}m$ and reliability. These films can also be used for connection between the ITO glass for LCD panel and the flexible circuit board. The curing conditions for the connection were 40, 20 and 15 seconds at 150, 170 and 190 $^{\circ}C$, respectively. The initial contact resistance and adhesion strength were 0.5 ${\Omega}/square$ and 0.4 kg/cm under the condition of 30 kgf/$^{cm}^2}$, respectively. After completing one thousand thermal shock cycling tests between -15 $^{\circ}C$ and 100 $^{\circ}C$, the contact resistance was maintained below 0.7 ${\Omega}/square$. Durability against high temperature (80$^{\circ}C$) and high humidity (85 % RH) was also tested to confirm long-term stability (1000 hrs) of the conduction.

Energy Efficiency Improvement of Vanadium Redox Flow Battery by Integrating Electrode and Bipolar Plate

  • Kim, Min-Young;Kang, Byeong-Su;Park, Sang-Jun;Lim, Jinsub;Hong, Youngsun;Han, Jong-Hun;Kim, Ho-Sung
    • Journal of Electrochemical Science and Technology
    • /
    • v.12 no.3
    • /
    • pp.330-338
    • /
    • 2021
  • An integral electrode-bipolar plate assembly, which is composed of electrode, conductive adhesive film (CAF) and bipolar plate, has been developed and evaluated for application with a vanadium redox flow battery (VRB) to decrease contact resistance between electrode and bipolar plate. The CAF, made of EVA (ethylene-vinyl-acetate) material with carbon black or CNT (Carbon Nano Tube), is applied between the electrode and the bipolar plate to enable an integral assembly by adhesion. In order to evaluate the integral assembly of VRB by adhesive film, the resistivity of integral assembly and the performance of single cell were investigated. Thus, it was verified that the integral assembly is applicable to redox flow battery. Through resistance and contact resistance of bare EVA and CAF films on bipolar plate were changed. Among the adhesive films, CAF film coated with carbon black showed the lowest value in through resistance, and CAF film coated with CNT showed the lowest value in contact resistance, respectively. The efficiency of VRB single cell was improved by applying CAF films coated with carbon black and CNT, resulting in the reduced overvoltage in charging process. Therefore, the energy efficiency of both CAF films, about 84%, were improved than that of blank cell, about 79.5 % under current density at 40 mA cm-2. The energy efficiency of the two cells were similar, but carbon black coated CAF improved the coulomb efficiency and CNT coated CAF improved the voltage efficiency, respectively.

Effect of Carbon Filler and Ester Type Binder on the Reactivity and Adhesive Properties with PET Film of Conductive Paste (탄소필러와 에스테르계 바인더가 전도성 페이스트의 반응성 및 PET 필름과의 접착특성에 미치는 영향)

  • Shim, Chang Up;Ku, Hyo Sun;Kim, Youn Cheol
    • Applied Chemistry for Engineering
    • /
    • v.33 no.4
    • /
    • pp.381-385
    • /
    • 2022
  • It is very important to secure the adhesion durability between the base film and the conductive paste for the development of a sensor for detecting hazardous chemicals. In this study, an ester binder was used to improve the adhesive properties which can be a problem when applying the sensor to the cross cut 0B or 1B grade. This problem was found while evaluating the adhesive properties by coating the polyaniline/graphene nano plate (GNP) paste on the polyethylene terephthalate (PET) film. When 10 wt% or more of the ester-based binder was added, the cross cut grade to which the sensor can be applied was 3B or higher. It was confirmed that the excessive addition of the binder may affect the electrical properties of the conductive paste and actually decrease the reactivity to sulfuric acid. To improve the electrical property, a carbon black (CB) content was varied resulting in the optimum electrical property observed at 2 wt% of CB.

Electrical Interconnection with a Smart ACA Composed of Fluxing Polymer and Solder Powder

  • Eom, Yong-Sung;Jang, Keon-Soo;Moon, Jong-Tae;Nam, Jae-Do
    • ETRI Journal
    • /
    • v.32 no.3
    • /
    • pp.414-421
    • /
    • 2010
  • The interconnection mechanisms of a smart anisotropic conductive adhesive (ACA) during processing have been characterized. For an understanding of chemorheological mechanisms between the fluxing polymer and solder powder, a thermal analysis as well as solder wetting and coalescence experiments were conducted. The compatibility between the viscosity of the fluxing polymer and melting temperature of solder was characterized to optimize the processing cycle. A fluxing agent was also used to remove the oxide layer performed on the surface of the solder. Based on these chemorheological phenomena of the fluxing polymer and solder, an optimum polymer system and its processing cycle were designed for high performance and reliability in an electrical interconnection system. In the present research, a bonding mechanism of the smart ACA with a polymer spacer ball to control the gap between both substrates is newly proposed and investigated. The solder powder was used as a conductive material instead of polymer-based spherical conductive particles in a conventional anisotropic conductive film.

Enhanced Adhesion of Cu Film on the Aluminum Oxide by Applying an Ion-beam-mixd Al Seed Layar

  • Kim, Hyeong-Jin;Park, Jae-Won
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.229-229
    • /
    • 2012
  • Adhesion of Copper film on the aluminum oxide layer formed by anodizing an aluminum plate was enhanced by applying ion beam mixing method. Forming an conductive metal layer on the insulating oxide surface without using adhesive epoxy bonds provide metal-PCB(Printed Circuit Board) better thermal conductivities, which are crucial for high power electric device working condition. IBM (Ion beam mixing) process consists of 3 steps; a preliminary deposition of an film, ion beam bombardment, and additional deposition of film with a proper thickness for the application. For the deposition of the films, e-beam evaporation method was used and 70 KeV N-ions were applied for the ion beam bombardment in this work. Adhesions of the interfaces measured by the adhesive tape test and the pull-off test showed an enhancement with the aid of IBM and the adhesion of the ion-beam-mixed films were commercially acceptable. The mixing feature of the atoms near the interface was studied by scanning electron microscopy, Auger electron spectroscopy, and X-ray photoelectron spectroscopy.

  • PDF

Development of a Method for ACF Bonding Based on Machine Vision (머신비전 기반 ACF 본딩 기법 개발)

  • Lee, Seokwon
    • The Journal of the Convergence on Culture Technology
    • /
    • v.4 no.3
    • /
    • pp.209-212
    • /
    • 2018
  • Anisotropic conductive film(ACF) bonding is widely used for making fine interconnections between two different materials where soldering is not easily applicable. There are three constraints for the successful implementation of ACF bonding. A bonding contact should be pressed by a hot head with the right pressure and temperature for a pre-defined curing time. In this paper, a method for ACF bonding based on machine vision system is proposed and verified through some experiments. The system calculates the position and orientation of printed circuit boards(PCBs) on a bonding table and estimates the optimal hitting point where the hot head should be applied. Experimental results show that the proposed system achieves better adhesive strength by providing head flatness over contact surfaces.

A Study on the Electromagnetic shielding Effectiveness Using Conductive Polymers (전도성 고분자를 이용한 전자파 차폐효과의 연구)

  • 하남규;이보현;김태영;김종은;서광석
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.3
    • /
    • pp.207-214
    • /
    • 2001
  • The conductive polymers, polyaniline (PANI) emeralidin base and 3,4-polyethylene dioxythiophene(PEDOT) were synthesized and coated on the PET film dealt with acryl type primer to study the electromagnetic shielding effectiveness. When both PANI and PEDOT were coated on the PET film dealt with acryl type priemer, their surface properties such as he adhesive increased. For PANI, when blended with the binder such as PMMA, it adhesive and surface hardness increased, too. The visible light transmittance decreased, while the electromagnetic shielding effectiveness increased, when coated thickness of PANI and PEDOT increased. For PANI, the electromagnetic shielding effectiveness increased as its surface resistance decreased. For PANI, when the surface resistance was 140 Ω/$\square$, the shielding effectiveness was found to be 11 dB in the far field, and 13 dB in the near field at 1 GHz. For PEDOT, when the surface resistance was 200 Ω/$\square$, the shielding effectiveness was found to be 3 dB in the far field, and 7dB in the near field.

  • PDF

Lifetime Estimation of an ACF in Navigation (Navigation Connection용 ACF(Anisotropic Conductive Film)의 수명 예측)

  • Yu, Yeong-Chang;Shin, Seung-Jung;Kwack, Kae-Dal
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1277-1282
    • /
    • 2008
  • Recently LCD panels have becom very important components for portable electronics. In the high density interconnection material, ACF's are used to connect the outer lead of the tape automated bonding to the transparent indium tin oxide electrodes of the LCD panel. ACF consists of an adhesive polymer matrix and randomly dispersed conductive balls. In this study, we analyzed Failure Mode / Mechanism of ACF which is identified Conductive ball Corrsion, Delamination, Crack and Polymer Expansion / Swelling. In ALT(Accelerated Life Test), we select primary stress factors as temperature and humidity. As time passes by, an increase of connection resistance was observed. In conclusion, we have found that high temperature / humidity affects the adhesion.

  • PDF

Tape-Type Liquid Leakage Film Sensor (액체누설 감지용 테이프형 필름센서)

  • Yu, D.K.;Kim, K.S.;Yub, H.K.;Han, G.H.;Jin, D.J.;Kim, J.H.;Han, S.H.;Cho, G.S.
    • Journal of the Korean Vacuum Society
    • /
    • v.20 no.2
    • /
    • pp.146-154
    • /
    • 2011
  • The adhesive-tape of a liquid leak film sensor including the alarm system is developed. The sensing film is composed of three layers such as base film layer, conductive line layer, and protection film layer. The thickness of film is 300~500 um, the width is 3.55 cm, and the unit length is 200 m. On the conductive line layer, three conducting lines and one resistive line are formulated by the electronic printing method with a conducting ink of silver-nano size. When a liquid leaks for the electricity to be conducted between the conductive line and the resistive line, the position of leakage is monitored by measuring the voltage varied according to the change of resistance between two lines. The error range of sensing position of 200 m film sensor is ${\pm}1m$.