• Title/Summary/Keyword: Conducting angles

Search Result 49, Processing Time 0.026 seconds

Enhancing air traffic management efficiency through edge computing and image-aided navigation

  • Pradum Behl;S. Charulatha
    • Advances in aircraft and spacecraft science
    • /
    • v.11 no.1
    • /
    • pp.33-53
    • /
    • 2024
  • This paper presents a comprehensive investigation into the optimization of Flight Management Systems (FMS) with a particular emphasis on data processing efficiency by conducting a comparative study with conventional methods to edge-computing technology. The objective of this research is twofold. Firstly, it evaluates the performance of FMS navigation systems using conventional and edge computing methodologies. Secondly, it aims to extend the boundaries of knowledge in edge-computing technology by conducting a rigorous analysis of terrain data and its implications on flight path optimization along with communication with ground stations. The study employs a combination of simulation-based experimentation and algorithmic computations. Through strategic intervals along the flight path, critical parameters such as distance, altitude profiles, and flight path angles are dynamically assessed. Additionally, edge computing techniques enhance data processing speeds, ensuring adaptability to various scenarios. This paper challenges existing paradigms in flight management and opens avenues for further research in integrating edge computing within aviation technology. The findings presented herein carry significant implications for the aviation industry, ranging from improved operational efficiency to heightened safety measures.

A study on the sleeve angles and gusset for the improvement of movability in a basic Kimono sleeve - Focusing on the standard body type in their thirties - (기모노 슬리브 원형의 가동성 향상을 위한 슬리브 각도와 거싯 연구 - 30대 표준체형을 중심으로 -)

  • Kwon, Soon Kyo;Jeong, Jae Chul;Park, Sun Kyung
    • The Research Journal of the Costume Culture
    • /
    • v.21 no.5
    • /
    • pp.742-754
    • /
    • 2013
  • This study aims to conduct a investigation on the gusset of a Kimono sleeve to achieve excellent movability through an evaluation of its fit wearing by conducting comparative research in terms of the length of the gusset pattern according to sleeve angle, which having a great effect on the wearing and activity of the top of a Kimono sleeve. A prototype was manufactured by developing the basic Kimono sleeve based on the method of Ernestine Kopp's basic bodice pattern. The sleeve angles which was applied to the prototype pattern of the Kimono sleeve ware approximately $50^{\circ}$, $70^{\circ}$ and the gusset was diamond-shaped which has a width of 10cm and lengths of 9cm, 10cm and 11cm. As a result, in the case of $55^{\circ}$ of the sleeve angle, the angle was gradually increased as the length of gusset was extended, although, in the case of $68^{\circ}$ of the sleeve angle, there was not remarkable effects between increased gusset length and the value of the angle. This result could be analyzed that the gusset did not affect remarkably since the sufficient movability was gained with only the angle in the case of $68^{\circ}$. Also, in the results of experiment on $55^{\circ}$ angle, as 9cm, 10cm and 11cm of length of gusset commonly indicated over $70^{\circ}$ in average, it was found that the movability was obtained sufficiently in every part.

The Effect of Ankle Joint Taping Applied to Patients with Hemiplegia on Their Gait Velocity and Joint Angles (편마비 환자의 발목관절에 테이핑 적용이 보행속도와 관절각도에 미치는 영향)

  • Lee, Min-Seok;Lee, Joon-Hee;Park, Seung-Kyu;Kang, Jeong-Il
    • The Journal of Korean Physical Therapy
    • /
    • v.24 no.2
    • /
    • pp.157-162
    • /
    • 2012
  • Purpose: This study is to identify the effect of Ankle Joint Taping applied to patients with chronic hemiplegia on their gait velocity and joint angles. Methods: We randomly extracted a clinical sample from 30 patients with hemiplegia resulting from stroke and classified them into two groups of a control group including 15 patients offered a regular therapeutic exercise and a test group including 15 patients offered taping. We also conducted the comparative analysis and pretest of the affected ankle joint angles by the normal characteristics of all subjects, Time to up and go test (TUG), 3D movement analyzer before the intervention. We applied taping to a test group for eight hours a day, five days a week during two weeks and conducted the comparative analysis of the gait velocity and the affected ankle joint angles by a comparison between and within two groups of before and after the intervention by conducting a posttest after the intervention. The result is as followings. Results: It indicated that there was a significantly decreased time with the increased gait velocity that a test according to a result of comparing the gait velocity within two groups (p<0.05). It indicated that there was a significantly increased angle in a comparison within two groups of test that inversion angle of a control group according to a result of comparing the ankle joint angles by 3D movement analyzer within groups (p<0.05). Conclusion: We found that TUG will help patients walk independently because it met a test group's need in the change of the gait velocity between two groups by recording less than 14 seconds which is the standard of using assistive aids and also found that ankle joint taping will help the joints prevent their function change considering that a control group showed an increased inversion angle in the change of the ankle joint within two groups.

EM wave scattering by bianisotropically coated multilayer cylinder with an impedance sheet[II] (쌍이방성 매질 코팅 다층 원통에 의한 전자파 산란 해석[II])

  • 엄상진;윤중한;이화춘;곽경섭
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.26 no.4B
    • /
    • pp.391-399
    • /
    • 2001
  • In this paper, electromagnetic wave scattering from a bianisotropicaly coated cylinder is formulated by using wave functions for bianisotropic media and boundary-value method. The cross section of the cylinder is made of a conducting core, a lossless dielectric layer which is both electrically magnetically bianisotropic, and a bianisotropic impedance sheet and a different uniaxial bianisotrpic coating. The solutions to arbitrary polarization angles are presented in two-dimensional. This paper presents and exact solution to the problem of scattering by a long composite circular cylinder using the boundary method. The validity of this solution is verified by comparing numerical results with those in literature. The numerical results for various geometrical and electrical parameters on bistatic scattering cross-section are presented.

  • PDF

Lifting Analysis for a Sunken Ship in Consideration of Elongation of Crane Ropes (크레인 로프의 신장을 고려한 침몰선체의 인양력 해석)

  • CHOI KYUNG-SIK;SHIN MAENG-KEE
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.3 s.52
    • /
    • pp.33-38
    • /
    • 2003
  • This study focuses on an analytical approach to calculate crane-lifting forces for a sunken ship, with consideration to elongation of crane ropes. The method takes into account the relation of lifting forces acting in wire rope slings to the inclination of the ship's hull, including the effect of lug positions. For lifting analysis, the Euler angles are defined to represent the inclination of a sunken ship in developing the static force and moment equations. An additional compatibility condition is introduced in order to solve an indeterminate lifting analysis problem with 4 cranes. A set of lifting forces along the 4 crane ropes is calculated. A 3-dimensional example of the G/T 1500 oil tanker is analyzed. The results show that the information obtained by the method could be useful to engineers when conducting salvage work.

Sonar-based yaw estimation of target object using shape prediction on viewing angle variation with neural network

  • Sung, Minsung;Yu, Son-Cheol
    • Ocean Systems Engineering
    • /
    • v.10 no.4
    • /
    • pp.435-449
    • /
    • 2020
  • This paper proposes a method to estimate the underwater target object's yaw angle using a sonar image. A simulator modeling imaging mechanism of a sonar sensor and a generative adversarial network for style transfer generates realistic template images of the target object by predicting shapes according to the viewing angles. Then, the target object's yaw angle can be estimated by comparing the template images and a shape taken in real sonar images. We verified the proposed method by conducting water tank experiments. The proposed method was also applied to AUV in field experiments. The proposed method, which provides bearing information between underwater objects and the sonar sensor, can be applied to algorithms such as underwater localization or multi-view-based underwater object recognition.

Analysis of Static Lateral Stability Using Mathematical Simulations for 3-Axis Tractor-Baler System

  • Hong, Sungha;Lee, Kyouseung;Kang, Daein;Park, Wonyeop
    • Journal of Biosystems Engineering
    • /
    • v.42 no.2
    • /
    • pp.86-97
    • /
    • 2017
  • Purpose: This study aims to evaluate the applicability of a tractor-baler system equipped with a newly developed round baler by conducting stability analyses via static-state mathematical simulations and verification experiments for the tractor equipped with a loader. Methods: The centers of gravity of the tractor and baler were calculated to analyze the transverse overturning of the system. This overturning of the system was analyzed by applying mathematical equations presented in previous research and comparing the results with those obtained by the newly developed mathematical simulation. For the case of the tractor equipped with a loader, mathematical simulation results and experimental values from verification experiments were compared and verified. Results: The center of gravity of the system became lower after the baler was attached to the tractor and the angle of transverse overturning of the system steadily increased or decreased as the deflection angle increased or decreased between $0^{\circ}$ and $180^{\circ}$ on the same gradient. In the results of the simulations performed by applying mathematical equations from previous research, right transverse overturning occurred when the tilt angle was at least $19.5^{\circ}$ and the range of deflection angles was from $82^{\circ}$ to $262^{\circ}$ in counter clockwise. Additionally, left transverse overturning also occurred at tilt angles of at least $19.5^{\circ}$ and the range of deflection angles was from $259^{\circ}$ to $79^{\circ}$ in counter clockwise. Under the $0^{\circ}$ deflection angle condition, in simulations of the tractor equipped with a loader, transverse overturning occurred at $17.9^{\circ}$, which is a 2.3% change from the results of the verification experiment ($17.5^{\circ}$). The simulations applied the center of gravity and the correlations between the tilt angles, formed by individual wheel ground contact points excluding wheel radius and hinge point height, which cannot be easily measured, for the convenient use of mathematical equations. The results indicated that both left and right transverse overturning occurred at $19.5^{\circ}$. Conclusions: The transverse overturning stability evaluation of the system, conducted via mathematical equation modeling, was stable enough to replace the mathematical equations proposed by previous researchers. The verification experiments and their results indicated that the system is workable at $12^{\circ}$, which is the tolerance limit for agricultural machines on the sloped lands in South Korea, and $15^{\circ}$, which is the tolerance limit for agricultural machines on the sloped grasslands of hay in Japan.

The study of drawing on the heterogeneous materials for the unidirectional alignment of carbon nanofiber in metal matrix nanocomposite (금속기지 나노복합재용 탄소나노섬유 일방향 배열을 위한 이종재 인발 연구)

  • 백영민;이상관;엄문광;김병민
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10a
    • /
    • pp.301-301
    • /
    • 2003
  • In current study, Nanocomposites are reinforced with carbon nanofiber, carbon nanotube and SiC, etc. Since the nano reinforcements have the excellent mechanical, thermal and electrical properties compared with that of existing composites, it has lately attracted considerable attention in the various areas. Cu have been widely used as signal transmission materials for electrical electronic components owing to its high electrical conductivity. However, it's size have been limited to small ones due to its poor mechanical properties. Until now, strengthening of the copper alloy was obtained either by the solid solution and precipitation hardening by adding alloy elements or the work hardening by deformation process. Adding the alloy elements lead to reduction of electrical conductivity. In this aspect, if carbon nanofiber is used as reinforcement which have outstanding mechanical strength and electric conductivity, it is possible to develope Cu matrix nanocomposite having almost no loss of electric conductivity. It is expected to be innovative in electric conducting material market. The unidirectional alignment of carbon nanofiber is the most challenging task developing the cooer matrix composites of high strength and electric conductivity. In this study, the unidirectional alignment of carbon nanofibers which is used reinforced material are controlled by drawing process and align mechanism as well as optimized drawing process parameter are verified via numerical analysis. The materials used in this study were pure copper and the nanofibers of 150nm in diameter and of 10∼20$\mu\textrm{m}$ in length. The materials have been tested and the tensile strength was 75MPa with the elongation of 44% for the copper. it is assumed that carbon nanofiber behave like porous elasto-plastic materials. Compaction test was conducted to obtain constitutive properties of carbon nanofiber Optimal parameter for drawing process was obtained by analytical and numerical analysis considering the various drawing angles, reduction areas, friction coefficient, etc. The lower drawing angles and lower reduction areas provides the less rupture of co tube is noticed during the drawing process and the better alignment of carbon nanofiber is obtained.

  • PDF

Analysis of the Electromagnetic Scattering by Conducting Strip Gratings with 2 Dielectric Layers On a Grounded Plane (접지평면위에 2개의 유전체층을 가지는 저항띠 격자구조에서의 전자파산란 해석)

  • 윤의중
    • The Journal of Information Technology
    • /
    • v.4 no.3
    • /
    • pp.77-86
    • /
    • 2001
  • In this paper, Electromagnetic scattering problem by a resistive strip grating with 2 dielectric layers on a ground plane according as resistivity of resistive strip, relative permittivity and thickness of dielectric layers, and incident angles of a electric wave is analyzed by applying the PMM (Point Matching Method) known as a numerical procedure. The scattered electromagnetic fields are expanded in a series of floquet mode functions. The boundary conditions are applied to obtain the unknown field coefficients and the resistive boundary condition is used for the relationship between the tangential electric field and the electric current density on the strip. According as the relative permittivity and the thickness of layers are increased, the values of the geometrically normalized reflected power have a high value and the values of strip width are moved toward a high value going from left to right. When the resistivity of this paper has a value of zero, the numerical results of the geometrically normalized reflected power show in good agreement with those by the PMM of existing paper. Then, the most energys of the sharp variation point in minimum values of the geometrically normalized reflected power are scattered in direction of the other angles except incident angle.

  • PDF

A Study on TE Scattering by a Conductive Strip Grating Over Grounded Two Dielectric Layers (접지된 2개 유전체층 위의 완전도체띠 격자구조에 의한 TE 산란에 관한 연구)

  • Yoon, Uei-Joong
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.2
    • /
    • pp.65-70
    • /
    • 2015
  • In this paper, the solutions of TE (transverse electric) scattering problems by a conductive strip grating over grounded two dielectric layers are analyzed by applying the PMM (point matching method) known as a numerical method of electromagnetic fileld. The boundary conditions are applied to obtain the unknown field coefficients, the scattered electromagnetic fields are expanded in a series of Floquet mode functions, and the conductive boundary condition apply to analysis of conducting strip. The most normalized reflected powers of the sharp variations in minimum values are scattered in direction of the other angles except incident angle. The numerical results for normalized reflected power are analyzed by according as the width and spacing of conductive strip, the relative permittivity and thickness of the two dielectric layers, and incident angles. The numerical results of present numericl analysis are shown in good agreement compared to those of the existing papers using FGMM (fourier galerkin moment method).