• Title/Summary/Keyword: Conditional reliability

Search Result 85, Processing Time 0.02 seconds

Probabilistic Assessment of Seepage Stability of Soil Foundation under Water Retaining Structures by Fragility Curves (취약도 곡선에 의한 수리구조물 하부 지반의 확률론적 침투 안정성 평가)

  • Cho, Sung-Eun
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.10
    • /
    • pp.41-54
    • /
    • 2021
  • In this study, probabilistic steady seepage behavior of soil foundation beneath water retaining structures according to the location of cutoffs was studied. A Monte Carlo Simulation based on the random finite element method that considers the uncertainty and spatial variability of soil permeability was performed to evaluate the probabilistic seepage behavior. Fragility curves were developed by calculating the failure probability conditional on the occurrence of a given water level from the probability distribution obtained from Monte Carlo simulations. The fragility curve was prepared for the flow quantities such as flow rate through foundation soil, uplift force on the base of structure, and exit gradient in downstream to examine the reliability of the water retaining structure and the foundation soil. From the fragility curves, the effect of the location of cutoff wall on the reliability of water retaining structure and foundation soil according to the rise in water level was studied.

Seismic Safety Assessment of Containment Building (격납건물의 내진안전성 평가)

  • Lee, Seong-Lo;Bae, Yong-Gwi
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.3
    • /
    • pp.225-233
    • /
    • 2004
  • In this study, the seismic safety of containment building is assessed using response surface method. The structural analyses considering random variables such as load, resistance and analysis by ABAQUS are performed to obtain the structural response. The structural response is represented by polynomial of random variables, and the reliability analysis is performed by Level II method. Drucker-Prager failure criterion is applied as limit state function to take bi-axial stress states into account in the concrete. The lifetime probability of failure is evaluated by considering the lifetime of containment building, the annual occurrence rate of earthquake and the conditional probability of failure. Also the sensitivity analysis on the selection of sampling points is performed to obtain the steady results from response surface method.

A Risk Evaluation Model of Power Distribution Line Using Bayesian Rule -Overhead Distribution System- (베이즈 규칙을 활용한 배전선로 위험도 평가모델 -가공배전분야-)

  • Joung, Jong-Man;Park, Yong-Woo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.6
    • /
    • pp.870-875
    • /
    • 2013
  • After introducing diagnosis equipment power failure prevention activities for distribution system have become more active. To do facility diagnosis and maintenance work more efficiently we need to evaluate reliability for the system and should determine the priority line with appropriate criteria. Thus, to calculate risk factor for the power distribution line that are composed of many component facilities its historical failure events for the last 5 years are collected and analysed. The failure statics show that more than 60% of various failures are related to environment factors randomly and about 20% of the failures are refer to the aging. As a strategic evaluation system reflecting these environmental influence is needed, a system on the basis of the probabilistic approach related statical variables in terms of failure rate and failure probability of electrical components is proposed. The figures for the evaluation are derived from the field failure DB. With adopting Bayesian rule we can calculate easily about conditional probability query. The proposed evaluation system is demonstrated with model system and the calculated indices representing the properties of the model line are discussed.

Durability Evaluation of Stainless Steel Conductive Yarn under Various Sewing Method by Repeated Strain and Abrasion Test (반복신장 및 마모강도시험을 통한 봉제방법에 따른 스테인리스 스틸 전도사의 내구성 평가)

  • Jung, Imjoo;Lee, Sunhee
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.42 no.3
    • /
    • pp.474-485
    • /
    • 2018
  • Smart sensors and connected devices have changed the concept of garments along with IT technology convergent garments that transform the performance of basic functions. Various types of products have been researched and developed due to the increased interest in smart clothing; in addition, studies based on physical and mechanical properties have also been actively studied to improve accuracy and reliability. This study represents a basic study for the development of smart textiles based on motion recognition for the surfing practice of beginners interested in IT convergence type. A physical durability evaluation of conductive yarn according to sewing method was later carried out. This study is a conditional specimen sewn with cotton lower thread and 100mm pattern length based on the results of previous studies. The durability of the conductive yarn according to the sewing method was evaluated according to the sewing method. Durability was evaluated by two kinds of repeated strain and abrasion tests. The specimen with applied cotton in a lower thread zigzag pattern 2mm stitch size 100mm stitch length was shown to have the most suitable durability for smart textile.

Life Cycle Cost Analysis Models for Bridge Structures using Artificial Intelligence Technologies (인공지능기술을 이용한 교량구조물의 생애주기비용분석 모델)

  • Ahn, Young-Ki;Im, Jung-Soon;Lee, Cheung-Bin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.4
    • /
    • pp.189-199
    • /
    • 2002
  • This study is intended to propose a systematic procedure for the development of the conditional assessment based on the safety of structures and the cost effective performance criteria for designing and upgrading of bridge structures. As a result, a set of cost function models for a life cycle cost analysis of bridge structures is proposed and thus the expected total life cycle costs (ETLCC) including initial (design, testing and construction) costs and direct/indirect damage costs considering repair and replacement costs, human losses and property damage costs, road user costs, and indirect regional economic losses costs. Also, the optimum safety indices are presented based on the expected total cost minimization function using only three parameters of the failure cost to the initial cost (${\tau}$), the extent of increased initial cost by improvement of safety (${\nu}$) and the order of an initial cost function (n). Through the enough numerical invetigations, we can positively conclude that the proposed optimum design procedure for bridge structures based on the ETLCC will lead to more rational, economical and safer design.

Trajectory Recognition and Tracking for Condensation Algorithm and Fuzzy Inference (Condensation 알고리즘과 퍼지 추론을 이용한 이동물체의 궤적인식 및 추적)

  • Kang, Suk-Bum;Yang, Tae-Kyu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.2
    • /
    • pp.402-409
    • /
    • 2007
  • In this paper recognized for trajectory using Condensation algorithm. In this pater used fuzzy controller for recognized trajectory using fuzzy reasoning. The fuzzy system tract to the three-dimensional space for raw and roll movement. The joint angle ${\theta}_1$ of the manipulator rotate from $0^{\circ}\;to\;360^{\circ}$, and the joint angle ${\theta}_2$ rotate from $0^{\circ}\;to\;180^{\circ}$. The moving object of velocity display for recognition without error using Condensation algorithm. The tracking system demonstrated the reliability of proposed algorithm through simulation against used trajectory.

Motion planning of a steam generator mobile tube-inspection robot

  • Xu, Biying;Li, Ge;Zhang, Kuan;Cai, Hegao;Zhao, Jie;Fan, Jizhuang
    • Nuclear Engineering and Technology
    • /
    • v.54 no.4
    • /
    • pp.1374-1381
    • /
    • 2022
  • Under the influence of nuclear radiation, the reliability of steam generators (SGs) is an important factor in the efficiency and safety of nuclear power plant (NPP) reactors. Motion planning that remotely manipulates an SG mobile tube-inspection robot to inspect SG heat transfer tubes is the mainstream trend of NPP robot development. To achieve motion planning, conditional traversal is usually used for base position optimization, and then the A* algorithm is used for path planning. However, the proposed approach requires considerable processing time and has a single expansion during path planning and plan paths with many turns, which decreases the working speed of the robot. Therefore, to reduce the calculation time and improve the efficiency of motion planning, modifications such as the matrix method, improved parent node, turning cost, and improved expanded node were proposed in this study. We also present a comprehensive evaluation index to evaluate the performance of the improved algorithm. We validated the efficiency of the proposed method by planning on a tube sheet with square-type tube arrays and experimenting with Model SG.

Three-dimensional geostatistical modeling of subsurface stratification and SPT-N Value at dam site in South Korea

  • Mingi Kim;Choong-Ki Chung;Joung-Woo Han;Han-Saem Kim
    • Geomechanics and Engineering
    • /
    • v.34 no.1
    • /
    • pp.29-41
    • /
    • 2023
  • The 3D geospatial modeling of geotechnical information can aid in understanding the geotechnical characteristic values of the continuous subsurface at construction sites. In this study, a geostatistical optimization model for the three-dimensional (3D) mapping of subsurface stratification and the SPT-N value based on a trial-and-error rule was developed and applied to a dam emergency spillway site in South Korea. Geospatial database development for a geotechnical investigation, reconstitution of the target grid volume, and detection of outliers in the borehole dataset were implemented prior to the 3D modeling. For the site-specific subsurface stratification of the engineering geo-layer, we developed an integration method for the borehole and geophysical survey datasets based on the geostatistical optimization procedure of ordinary kriging and sequential Gaussian simulation (SGS) by comparing their cross-validation-based prediction residuals. We also developed an optimization technique based on SGS for estimating the 3D geometry of the SPT-N value. This method involves quantitatively testing the reliability of SGS and selecting the realizations with a high estimation accuracy. Boring tests were performed for validation, and the proposed method yielded more accurate prediction results and reproduced the spatial distribution of geotechnical information more effectively than the conventional geostatistical approach.

Comparison of event tree/fault tree and convolution approaches in calculating station blackout risk in a nuclear power plant

  • Man Cheol Kim
    • Nuclear Engineering and Technology
    • /
    • v.56 no.1
    • /
    • pp.141-146
    • /
    • 2024
  • Station blackout (SBO) risk is one of the most significant contributors to nuclear power plant risk. In this paper, the sequence probability formulas derived by the convolution approach are compared with those derived by the conventional event tree/fault tree (ET/FT) approach for the SBO situation in which emergency diesel generators fail to start. The comparison identifies what makes the ET/FT approach more conservative and raises the issue regarding the mission time of a turbine-driven auxiliary feedwater pump (TDP), which suggests a possible modeling improvement in the ET/FT approach. Monte Carlo simulations with up-to-date component reliability data validate the convolution approach. The sequence probability of an alternative alternating current diesel generator (AAC DG) failing to start and the TDP failing to operate owing to battery depletion contributes most to the SBO risk. The probability overestimation of the scenario in which the AAC DG fails to run and the TDP fails to operate owing to battery depletion contributes most to the SBO risk overestimation determined by the ET/FT approach. The modification of the TDP mission time renders the sequence probabilities determined by the ET/FT approach more consistent with those determined by the convolution approach.

Effect of Academic Attitude on Academic Satisfaction of College Students in China: Indirect Effect of Sincerity and Conditional Indirect Effect of Gender (중국 대학생의 학업태도가 학업만족도에 미치는 영향: 성실성의 간접효과와 성별의 조건부 간접효과)

  • Yueping Dai;Qiaoling Qiu;Chang Seek Lee
    • Industry Promotion Research
    • /
    • v.8 no.3
    • /
    • pp.221-230
    • /
    • 2023
  • With the continuous development of higher education, the academic satisfaction of college students has become one of the important indicators to evaluate the quality of education and student development. Therefore, this study aims to explore the role of gender in academic attitude, sincerity, and academic satisfaction of college students in China. The subject of the study was selected by using the purposive sampling method, and data were collected using the survey method. 400 questionnaires were distributed to college students in Guangzhou, China, and 388 questionnaires were used for the final analysis. For statistical analysis, SPSS PC+ Win. ver. 26.0 and SPSS PROCESS macro ver. 4.2 were used, and frequency analysis, reliability analysis, correlation analysis, and conditional indirect effect analysis were performed. The research results are as follows. First, academic attitude had a significant positive correlation with sincerity, gender, and academic satisfaction. Second, gender moderated the intermediary role of academic attitude on academic satisfaction through sincerity. This study indicated that different strategies are needed according to gender to improve academic satisfaction using academic attitude and sincerity of college students. Based on the results, plans to improve the academic satisfaction of college students were suggested.