• Title/Summary/Keyword: Conditional heteroskedasticity

Search Result 22, Processing Time 0.023 seconds

Determinants of Vietnam Government Bond Yield Volatility: A GARCH Approach

  • TRINH, Quoc Trung;NGUYEN, Anh Phong;NGUYEN, Hoang Anh;NGO, Phu Thanh
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.7 no.7
    • /
    • pp.15-25
    • /
    • 2020
  • This empirical research aims to identify the relationship between fiscal and financial macroeconomic fundamentals and the volatility of government bonds' borrowing cost in an emerging country - Vietnam. The study covers the period from July 2006 to December 2019 and it is based on a sample of 1-year, 3-year, and 5-year government bonds, which represent short-term, medium-term and long-term sovereign bonds in Vietnam, respectively. The Generalized AutoRegressive Conditional Heteroskedasticity (GARCH) model and its derivatives such as EGARCH and TGARCH are applied on monthly dataset to examine and suggest a significant effect of fiscal and financial determinants of bond yield volatility. The findings of this study indicate that the variation of Vietnam government bond yields is in compliance with the theories of term structure of interest rate. The results also show that a proportion of the variation in the yields on Vietnam government bonds is attributed to the interest rate itself in the previous period, base rate, foreign interest rate, return of the stock market, fiscal deficit, public debt, and current account balance. Our results could be helpful in the macroeconomic policy formulation for policy-makers and in the investment practice for investors regarding the prediction of bond yield volatility.

Modeling and Forecasting Saudi Stock Market Volatility Using Wavelet Methods

  • ALSHAMMARI, Tariq S.;ISMAIL, Mohd T.;AL-WADI, Sadam;SALEH, Mohammad H.;JABER, Jamil J.
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.7 no.11
    • /
    • pp.83-93
    • /
    • 2020
  • This empirical research aims to modeling and improving the forecasting accuracy of the volatility pattern by employing the Saudi Arabia stock market (Tadawul)by studying daily closed price index data from October 2011 to December 2019 with a number of observations being 2048. In order to achieve significant results, this study employs many mathematical functions which are non-linear spectral model Maximum overlapping Discrete Wavelet Transform (MODWT) based on the best localized function (Bl14), autoregressive integrated moving average (ARIMA) model and generalized autoregressive conditional heteroskedasticity (GARCH) models. Therefore, the major findings of this study show that all the previous events during the mentioned period of time will be explained and a new forecasting model will be suggested by combining the best MODWT function (Bl14 function) and the fitted GARCH model. Therefore, the results show that the ability of MODWT in decomposition the stock market data, highlighting the significant events which have the most highly volatile data and improving the forecasting accuracy will be showed based on some mathematical criteria such as Mean Absolute Percentage Error (MAPE), Mean Absolute Scaled Error (MASE), Root Means Squared Error (RMSE), Akaike information criterion. These results will be implemented using MATLAB software and R- software.

Volatility clustering in data breach counts

  • Shim, Hyunoo;Kim, Changki;Choi, Yang Ho
    • Communications for Statistical Applications and Methods
    • /
    • v.27 no.4
    • /
    • pp.487-500
    • /
    • 2020
  • Insurers face increasing demands for cyber liability; entailed in part by a variety of new forms of risk of data breaches. As data breach occurrences develop, our understanding of the volatility in data breach counts has also become important as well as its expected occurrences. Volatility clustering, the tendency of large changes in a random variable to cluster together in time, are frequently observed in many financial asset prices, asset returns, and it is questioned whether the volatility of data breach occurrences are also clustered in time. We now present volatility analysis based on INGARCH models, i.e., integer-valued generalized autoregressive conditional heteroskedasticity time series model for frequency counts due to data breaches. Using the INGARCH(1, 1) model with data breach samples, we show evidence of temporal volatility clustering for data breaches. In addition, we present that the firms' volatilities are correlated between some they belong to and that such a clustering effect remains even after excluding the effect of financial covariates such as the VIX and the stock return of S&P500 that have their own volatility clustering.

Forecasting Volatility of Stocks Return: A Smooth Transition Combining Forecasts

  • HO, Jen Sim;CHOO, Wei Chong;LAU, Wei Theng;YEE, Choy Leng;ZHANG, Yuruixian;WAN, Cheong Kin
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.9 no.10
    • /
    • pp.1-13
    • /
    • 2022
  • This paper empirically explores the predicting ability of the newly proposed smooth transition (ST) time-varying combining forecast methods. The proposed method allows the "weight" of combining forecasts to change gradually over time through its unique feature of transition variables. Stock market returns from 7 countries were applied to Ad Hoc models, the well-known Generalized Autoregressive Conditional Heteroskedasticity (GARCH) family models, and the Smooth Transition Exponential Smoothing (STES) models. Of the individual models, GJRGARCH and STES-E&AE emerged as the best models and thereby were chosen for constructing the combined forecast models where a total of nine ST combining methods were developed. The robustness of the ST combining forecasts is also validated by the Diebold-Mariano (DM) test. The post-sample forecasting performance shows that ST combining forecast methods outperformed all the individual models and fixed weight combining models. This study contributes in two ways: 1) the ST combining methods statistically outperformed all the individual forecast methods and the existing traditional combining methods using simple averaging and Bates & Granger method. 2) trading volume as a transition variable in ST methods was superior to other individual models as well as the ST models with single sign or size of past shocks as transition variables.

Supremacy of Realized Variance MIDAS Regression in Volatility Forecasting of Mutual Funds: Empirical Evidence From Malaysia

  • WAN, Cheong Kin;CHOO, Wei Chong;HO, Jen Sim;ZHANG, Yuruixian
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.9 no.7
    • /
    • pp.1-15
    • /
    • 2022
  • Combining the strength of both Mixed Data Sampling (MIDAS) Regression and realized variance measures, this paper seeks to investigate two objectives: (1) evaluate the post-sample performance of the proposed weekly Realized Variance-MIDAS (RVar-MIDAS) in one-week ahead volatility forecasting against the established Generalized Autoregressive Conditional Heteroskedasticity (GARCH) model and the less explored but robust STES (Smooth Transition Exponential Smoothing) methods. (2) comparing forecast error performance between realized variance and squared residuals measures as a proxy for actual volatility. Data of seven private equity mutual fund indices (generated from 57 individual funds) from two different time periods (with and without financial crisis) are applied to 21 models. Robustness of the post-sample volatility forecasting of all models is validated by the Model Confidence Set (MCS) Procedures and revealed: (1) The weekly RVar-MIDAS model emerged as the best model, outperformed the robust DAILY-STES methods, and the weekly DAILY-GARCH models, particularly during a volatile period. (2) models with realized variance measured in estimation and as a proxy for actual volatility outperformed those using squared residual. This study contributes an empirical approach to one-week ahead volatility forecasting of mutual funds return, which is less explored in past literature on financial volatility forecasting compared to stocks volatility.

A Study on the Impact of Oil Price Volatility on Korean Macro Economic Activities : An EGARCH and VECM Approach (국제유가의 변동성이 한국 거시경제에 미치는 영향 분석 : EGARCH 및 VECM 모형의 응용)

  • Kim, Sang-Su
    • Journal of Distribution Science
    • /
    • v.11 no.10
    • /
    • pp.73-79
    • /
    • 2013
  • Purpose - This study examines the impact of oil price volatility on economic activities in Korea. The new millennium has seen a deregulation in the crude oil market, which invited immense capital inflow into Korea. It has also raised oil price levels and volatility. Drawing on the recent theoretical literature that emphasizes the role of volatility, this paper attends to the asymmetric changes in economic growth in response to the oil price movement. This study further examines several key macroeconomic variables, such as interest rate, production, and inflation. We come to the conclusion that oil price volatility can, in some part, explain the structural changes. Research design, data, and methodology - We use two methodological frameworks in this study. First, in regards to the oil price uncertainty, we use an Exponential-GARCH (Exponential Generalized Autoregressive Conditional Heteroskedasticity: EGARCH) model estimate to elucidate the asymmetric effect of oil price shock on the conditional oil price volatility. Second, along with the estimation of the conditional volatility by the EGARCH model, we use the estimates in a VECM (Vector Error Correction Model). The study thus examines the dynamic impacts of oil price volatility on industrial production, price levels, and monetary policy responses. We also approximate the monetary policy function by the yield of monetary stabilization bond. The data collected for the study ranges from 1990: M1 to 2013: M7. In the VECM analysis section, the time span is split into two sub-periods; one from 1990 to 1999, and another from 2000 to 2013, due to the U.S. CFTC (Commodity Futures Trading Commission) deregulation on the crude oil futures that became effective in 2000. This paper intends to probe the relationship between oil price uncertainty and macroeconomic variables since the structural change in the oil market became effective. Results and Conclusions - The dynamic impulse response functions obtained from the VECM show a prolonged dampening effect of oil price volatility shock on the industrial production across all sub-periods. We also find that inflation measured by CPI rises by one standard deviation shock in response to oil price uncertainty, and lasts for the ensuing period. In addition, the impulse response functions allude that South Korea practices an expansionary monetary policy in response to oil price shocks, which stems from oil price uncertainty. Moreover, a comparison of the results of the dynamic impulse response functions from the two sub-periods suggests that the dynamic relationships have strengthened since 2000. Specifically, the results are most drastic in terms of industrial production; the impact of oil price volatility shocks has more than doubled from the year 2000 onwards. These results again indicate that the relationships between crude oil price uncertainty and Korean macroeconomic activities have been strengthened since the year2000, which resulted in a structural change in the crude oil market due to the deregulation of the crude oil futures.

The fGARCH(1, 1) as a functional volatility measure of ultra high frequency time series (함수적 변동성 fGARCH(1, 1)모형을 통한 초고빈도 시계열 변동성)

  • Yoon, J.E.;Kim, Jong-Min;Hwang, S.Y.
    • The Korean Journal of Applied Statistics
    • /
    • v.31 no.5
    • /
    • pp.667-675
    • /
    • 2018
  • When a financial time series consists of daily (closing) returns, traditional volatility models such as autoregressive conditional heteroskedasticity (ARCH) and generalized ARCH (GARCH) are useful to figure out daily volatilities. With high frequency returns in a day, one may adopt various multivariate GARCH techniques (MGARCH) (Tsay, Multivariate Time Series Analysis With R and Financial Application, John Wiley, 2014) to obtain intraday volatilities as long as the high frequency is moderate. When it comes to the ultra high frequency (UHF) case (e.g., one minute prices are available everyday), a new model needs to be developed to suit UHF time series in order to figure out continuous time intraday-volatilities. Aue et al. (Journal of Time Series Analysis, 38, 3-21; 2017) proposed functional GARCH (fGARCH) to analyze functional volatilities based on UHF data. This article introduces fGARCH to the readers and illustrates how to estimate fGARCH equations using UHF data of KOSPI and Hyundai motor company.

Study on time-varying herd behavior in individual stocks (개별 주가에 반영된 시변 무리행동 연구)

  • Park, Beum-Jo
    • Journal of the Korean Data and Information Science Society
    • /
    • v.22 no.3
    • /
    • pp.423-436
    • /
    • 2011
  • Many of the theoretical studies have considered herd behavior as a source of the volatility in financial markets, but there have been few empirical studies on the dynamic herding due to the technical difficulty of detecting herd behavior with time-series data. In this context, this paper proposes a new method for measuring time-varying herd behavior based on QR-GARCH model. Using daily data of KOSPI stocks, this paper provides some empirical evidence for strong and volatile herding among traders of stocks of medium firms, and shows that time-varying herd behavior in traders of some stocks has persistent autocorrelation.

Wild bootstrap Ljung-Box test for autocorrelation in vector autoregressive and error correction models (벡터자기회귀모형과 오차수정모형의 자기상관성을 위한 와일드 붓스트랩 Ljung-Box 검정)

  • Lee, Myeongwoo;Lee, Taewook
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.1
    • /
    • pp.61-73
    • /
    • 2016
  • We consider the wild bootstrap Ljung-Box (LB) test for autocorrelation in residuals of fitted multivariate time series models. The asymptotic chi-square distribution under the IID assumption is traditionally used for the LB test; however, size distortion tends to occur in the usage of the LB test, due to the conditional heteroskedasticity of financial time series. In order to overcome such defects, we propose the wild bootstrap LB test for autocorrelation in residuals of fitted vector autoregressive and error correction models. The simulation study and real data analysis are conducted for finite sample performance.

Volatility Analysis of Housing Prices as the Housing Size (주택 규모에 따른 가격 변동성 분석)

  • Kim, Jongho;Chung, Jaeho;Baek, Sungjoon
    • The Journal of the Korea Contents Association
    • /
    • v.13 no.7
    • /
    • pp.432-439
    • /
    • 2013
  • In this study, we evaluate the volatility of housing prices by using literature review and empirical analysis and furthermore we suggest how to improve. In order to diagnose housing market, the KB Bank's House Price Index, Real estate 114;s materials were compared. In addition, to examine the volatility, GARCH (Generalized Autoregressive Conditional Heteroskedasticity) and EGARCH (Exponential GARCH) model are used. By analysis of this research, we found the volatility of housing price also was reduced in the medium and the large houses since 1998, while the volatility of small housing price relatively was large. We proved that the price change rate of small housing was higher than the medium's. On the order hand, the supply of small apartments fell down sharply. The short-term oriented policy should be avoided, and the efficiency and credibility of policy should be increased. Furthermore, the long-term policy system should be established. and rental market's improvement is necessary for stabilization of housing market.