• Title/Summary/Keyword: Conditional copula

Search Result 13, Processing Time 0.028 seconds

A development of downscaling scheme for sub-daily extreme precipitation using conditional copula model (조건부 Copula 모형을 활용한 시간단위 극치강우량 상세화 기법 개발)

  • Kim, Jin-Young;Park, Chan-Young;Kwon, Hyun-Han
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.10
    • /
    • pp.863-876
    • /
    • 2016
  • Climate change projections for precipitation are in general provided at daily time step. However, sub-daily precipitation data is necessarily required for hydrologic design and management. Thus, a reliable downscaling model is needed to analyze impact of climate change on water resources. While daily downscaling models have been widely developed and applied in hydrologic and climate community, hourly downscaling models have not been properly developed. In this regard, this study aims at developing a hourly downscaling model that can better reproduce sub-daily extreme rainfalls using conditional copula model. The proposed model was applied to generate extreme rainfalls under the RCP 8.5 scenario for weather stations in South Korea, and design rainfalls were then finally provided. We expected that the future design rainfalls can be used for baseline data to evaluate impact of climate change on water resources.

A numerical study on portfolio VaR forecasting based on conditional copula (조건부 코퓰라를 이용한 포트폴리오 위험 예측에 대한 실증 분석)

  • Kim, Eun-Young;Lee, Tae-Wook
    • Journal of the Korean Data and Information Science Society
    • /
    • v.22 no.6
    • /
    • pp.1065-1074
    • /
    • 2011
  • During several decades, many researchers in the field of finance have studied Value at Risk (VaR) to measure the market risk. VaR indicates the worst loss over a target horizon such that there is a low, pre-specified probability that the actual loss will be larger (Jorion, 2006, p.106). In this paper, we compare conditional copula method with two conventional VaR forecasting methods based on simple moving average and exponentially weighted moving average for measuring the risk of the portfolio, consisting of two domestic stock indices. Through real data analysis, we conclude that the conditional copula method can improve the accuracy of portfolio VaR forecasting in the presence of high kurtosis and strong correlation in the data.

Dependence Structure of Korean Financial Markets Using Copula-GARCH Model

  • Kim, Woohwan
    • Communications for Statistical Applications and Methods
    • /
    • v.21 no.5
    • /
    • pp.445-459
    • /
    • 2014
  • This paper investigates the dependence structure of Korean financial markets (stock, foreign exchange (FX) rates and bond) using copula-GARCH and dynamic conditional correlation (DCC) models. We examine GJR-GARCH with skewed elliptical distributions and four copulas (Gaussian, Student's t, Clayton and Gumbel) to model dependence among returns, and then employ DCC model to describe system-wide correlation dynamics. We analyze the daily returns of KOSPI, FX (WON/USD) and KRX bond index (Gross Price Index) from $2^{nd}$ May 2006 to $30^{th}$ June 2014 with 2,063 observations. Empirical result shows that there is significant asymmetry and fat-tail of individual return, and strong tail-dependence among returns, especially between KOSPI and FX returns, during the 2008 Global Financial Crisis period. Focused only on recent 30 months, we find that the correlation between stock and bond markets shows dramatic increase, and system-wide correlation wanders around zero, which possibly indicates market tranquility from a systemic perspective.

Estimation of the joint conditional distribution for repeatedly measured bivariate cholesterol data using Gaussian copula (가우시안 코플라를 이용한 반복측정 이변량 자료의 조건부 결합 분포 추정)

  • Kwak, Minjung
    • The Korean Journal of Applied Statistics
    • /
    • v.30 no.2
    • /
    • pp.203-213
    • /
    • 2017
  • We study estimation and inference of joint conditional distributions of bivariate longitudinal outcomes using regression models and copulas. We consider a class of time-varying transformation models and combine the two marginal models using Gaussian copulas to estimate the joint models. Our models and estimation method can be applied in many situations where the conditional mean-based models are inadequate. Gaussian copulas combined with time-varying transformation models may allow convenient and easy-to-interpret modeling for the joint conditional distributions for bivariate longitudinal data. We apply our method to an epidemiological study of repeatedly measured bivariate cholesterol data.

Multivariate CTE for copula distributions

  • Hong, Chong Sun;Kim, Jae Young
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.2
    • /
    • pp.421-433
    • /
    • 2017
  • The CTE (conditional tail expectation) is a useful risk management measure for a diversified investment portfolio that can be generally estimated by using a transformed univariate distribution. Hong et al. (2016) proposed a multivariate CTE based on multivariate quantile vectors, and explored its characteristics for multivariate normal distributions. Since most real financial data is not distributed symmetrically, it is problematic to apply the CTE to normal distributions. In order to obtain a multivariate CTE for various kinds of joint distributions, distribution fitting methods using copula functions are proposed in this work. Among the many copula functions, the Clayton, Frank, and Gumbel functions are considered, and the multivariate CTEs are obtained by using their generator functions and parameters. These CTEs are compared with CTEs obtained using other distribution functions. The characteristics of the multivariate CTEs are discussed, as are the properties of the distribution functions and their corresponding accuracy. Finally, conclusions are derived and presented with illustrative examples.

Development of daily spatio-temporal downscaling model with conditional Copula based bias-correction of GloSea5 monthly ensemble forecasts (조건부 Copula 함수 기반의 월단위 GloSea5 앙상블 예측정보 편의보정 기법과 연계한 일단위 시공간적 상세화 모델 개발)

  • Kim, Yong-Tak;Kim, Min Ji;Kwon, Hyun-Han
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.12
    • /
    • pp.1317-1328
    • /
    • 2021
  • This study aims to provide a predictive model based on climate models for simulating continuous daily rainfall sequences by combining bias-correction and spatio-temporal downscaling approaches. For these purposes, this study proposes a combined modeling system by applying conditional Copula and Multisite Non-stationary Hidden Markov Model (MNHMM). The GloSea5 system releases the monthly rainfall prediction on the same day every week, however, there are noticeable differences in the updated prediction. It was confirmed that the monthly rainfall forecasts are effectively updated with the use of the Copula-based bias-correction approach. More specifically, the proposed bias-correction approach was validated for the period from 1991 to 2010 under the LOOCV scheme. Several rainfall statistics, such as rainfall amounts, consecutive rainfall frequency, consecutive zero rainfall frequency, and wet days, are well reproduced, which is expected to be highly effective as input data of the hydrological model. The difference in spatial coherence between the observed and simulated rainfall sequences over the entire weather stations was estimated in the range of -0.02~0.10, and the interdependence between rainfall stations in the watershed was effectively reproduced. Therefore, it is expected that the hydrological response of the watershed will be more realistically simulated when used as input data for the hydrological model.

Probabilistic Analysis of Drought Characteristics in Pakistan Using a Bivariate Copula Model

  • Jehanzaib, Muhammad;Kim, Ji Eun;Park, Ji Yeon;Kim, Tae-Woong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.151-151
    • /
    • 2019
  • Because drought is a complex and stochastic phenomenon in nature, statistical approaches for drought assessment receive great attention for water resource planning and management. Generally drought characteristics such as severity, duration and intensity are modelled separately. This study aims to develop a relationship between drought characteristics using a bivariate copula model. To achieve the objective, we calculated the Standardized Precipitation Index (SPI) using rainfall data at 6 rain gauge stations for the period of 1961-1999 in Jehlum River Basin, Pakistan, and investigated the drought characteristics. Since there is a significant correlation between drought severity and duration, they are usually modeled using different marginal distributions and joint distribution function. Using exponential distribution for drought severity and log-logistic distribution for drought duration, the Galambos copula was recognized as best copula to model joint distribution of drought severity and duration based on the KS-statistic. Various return periods of drought were calculated to identify time interval of repeated drought events. The result of this study can provide useful information for effective water resource management and shows superiority against univariate drought analysis.

  • PDF

Estimation of the joint conditional distribution for repeatedly measured bivariate cholesterol data using nonparametric copula (비모수적 코플라를 이용한 반복측정 이변량 자료의 조건부 결합 분포 추정)

  • Kwak, Minjung
    • Journal of the Korean Data and Information Science Society
    • /
    • v.27 no.3
    • /
    • pp.689-700
    • /
    • 2016
  • We study estimation and inference of the joint conditional distributions of bivariate longitudinal outcomes using regression models and copulas. For the estimation of marginal models we consider a class of time-varying transformation models and combine the two marginal models using nonparametric empirical copulas. Regression parameters in the transformation model can be obtained as the solution of estimating equations and our models and estimation method can be applied in many situations where the conditional mean-based models are not good enough. Nonparametric copulas combined with time-varying transformation models may allow quite flexible modeling for the joint conditional distributions for bivariate longitudinal data. We apply our method to an epidemiological study of repeatedly measured bivariate cholesterol data.

Modelling and Simulating the Spatio-Temporal Correlations of Clustered Wind Power Using Copula

  • Zhang, Ning;Kang, Chongqing;Xu, Qianyao;Jiang, Changming;Chen, Zhixu;Liu, Jun
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.6
    • /
    • pp.1615-1625
    • /
    • 2013
  • Modelling and simulating the wind power intermittent behaviour are the basis of the planning and scheduling studies concerning wind power integration. The wind power outputs are evidently correlated in space and time and bring challenges in characterizing their behaviour. This paper provides a methodology to model and simulate the clustered wind power considering its spatio-temporal correlations using the theory of copula. The sampling approach captures the complex spatio-temporal connections among the wind farms by employing a conditional density function calculated using multidimensional copula function. The empirical study of real wind power measurement shows how the wind power outputs are correlated and how these correlations affect the overall uncertainty of clustered wind power output. The case study validates the simulation technique by comparing the simulated results with the real measurements.

English No Matter Construction: A Construction-based Perspective

  • Kim, Jong-Bok;Lee, Seung Han
    • Journal of English Language & Literature
    • /
    • v.57 no.6
    • /
    • pp.959-976
    • /
    • 2011
  • The expression no matter, combining with an interrogative clause X, expresses 'it doesn't matter what the value is of X' and displays many syntactic and semantic peculiarities. To better understand the grammatical properties of the construction in question, we investigate English corpora available online and suggest that some of the irreducible properties the construction displays can be best captured by the inheritance mechanism which plays a central role in the HPSG and Construction Grammar. We show that the construction in question has its own constructional properties, but also inherits properties from related major head constructions.