• 제목/요약/키워드: Conditional Fuzzy C-Means

검색결과 13건 처리시간 0.025초

퍼지 kNN과 Conditional FCM을 이용한 퍼지 RBF의 설계 (Design of Radial Basis Function with the Aid of Fuzzy KNN and Conditional FCM)

  • 노석범;오성권
    • 전기학회논문지
    • /
    • 제58권6호
    • /
    • pp.1223-1229
    • /
    • 2009
  • The performance of Radial Basis Function Neural Networks depends on setting up the Radial Basis Functions over the input space which are the important design procedure of Radial Basis Function Neural Networks. The existing method to initialize the location of the radial basis functions over the input space is to use the conditional fuzzy C-means clustering. However, the researchers which are interested in the conditional fuzzy C-means clustering cannot get as good modeling performance as they expect because the conditional fuzzy C-means clustering cannot project the information which is extracted over the output space into the input space. To compensate the above mentioned drawback of the conditional fuzzy C-means clustering, we apply a fuzzy K-nearest neighbors approach to project the auxiliary information defined over the output space into the input space without lose of the information.

Identification of Plastic Wastes by Using Fuzzy Radial Basis Function Neural Networks Classifier with Conditional Fuzzy C-Means Clustering

  • Roh, Seok-Beom;Oh, Sung-Kwun
    • Journal of Electrical Engineering and Technology
    • /
    • 제11권6호
    • /
    • pp.1872-1879
    • /
    • 2016
  • The techniques to recycle and reuse plastics attract public attention. These public attraction and needs result in improving the recycling technique. However, the identification technique for black plastic wastes still have big problem that the spectrum extracted from near infrared radiation spectroscopy is not clear and is contaminated by noise. To overcome this problem, we apply Raman spectroscopy to extract a clear spectrum of plastic material. In addition, to improve the classification ability of fuzzy Radial Basis Function Neural Networks, we apply supervised learning based clustering method instead of unsupervised clustering method. The conditional fuzzy C-Means clustering method, which is a kind of supervised learning based clustering algorithms, is used to determine the location of radial basis functions. The conditional fuzzy C-Means clustering analyzes the data distribution over input space under the supervision of auxiliary information. The auxiliary information is defined by using k Nearest Neighbor approach.

Blind Channel Equalization Using Conditional Fuzzy C-Means

  • Han, Soo-Whan
    • 한국멀티미디어학회논문지
    • /
    • 제14권8호
    • /
    • pp.965-980
    • /
    • 2011
  • In this paper, the use of conditional Fuzzy C-Means (CFCM) aimed at estimation of desired states of an unknown digital communication channel is investigated for blind channel equalization. In the proposed CFCM, a collection of clustered centers is treated as a set of pre-defined desired channel states, and used to extract channel output states. By considering the combinations of the extracted channel output states, all possible sets of desired channel states are constructed. The set of desired states characterized by the maximal value of the Bayesian fitness function is subsequently selected for the next fuzzy clustering epoch. This modification of CFCM makes it possible to search for the optimal desired channel states of an unknown channel. Finally, given the desired channel states, the Bayesian equalizer is implemented to reconstruct transmitted symbols. In a series of simulations, binary signals are generated at random with Gaussian noise, and both linear and nonlinear channels are evaluated. The experimental studies demonstrate that the performance (being expressed in terms of accuracy and speed) of the proposed CFCM is superior to the performance of the existing method exploiting the "conventional" Fuzzy C-Means (FCM).

계층적 구조를 가진 퍼지 패턴 분류기 설계 (A Design of Fuzzy Classifier with Hierarchical Structure)

  • 안태천;노석범;김용수
    • 한국지능시스템학회논문지
    • /
    • 제24권4호
    • /
    • pp.355-359
    • /
    • 2014
  • 본 논문은 단순한 후반부 구조를 가진 퍼지 모델을 계층적 구조로 결합한 퍼지 패턴 분류기를 제안한다. 계층적 구조를 가진 퍼지 패턴 분류기의 기본 구조는 단순한 후반부 구조를 가진 퍼지 모델을 사용하여 전체 패턴 분류기의 구조적 복잡성을 높이지 않도록 설계 하였다. 입력공간을 계층적으로 분할하기 위하여 대표적인 퍼지 클러스터링 알고리즘인 Fuzzy C-Means clustering 기법을 이용하였다. 분할된 퍼지 입력 공간의 하위 구조를 분석하기 위하여 conditional Fuzzy C-Means 클러스터링 기법을 이용하였다. 계층적으로 분할된 퍼지 입력공간에 간단한 구조를 가진 퍼지 패턴 분류기를 적용하여 계층적 구조를 가진 패턴 분류기를 설계한다. 계층적으로 퍼지 모델들을 결합함으로써 입력 공간의 정보 분석을 거시적인 관점에서 시작하여 세부적으로 분석이 가능하게 되었다. 제안된 퍼지 패턴 분류기의 성능을 평가하기 위하여 다양한 기계 학습 데이터를 사용하였다.

Gaussian Weighted CFCM for Blind Equalization of Linear/Nonlinear Channel

  • Han, Soo-Whan
    • 융합신호처리학회논문지
    • /
    • 제14권3호
    • /
    • pp.169-180
    • /
    • 2013
  • The modification of conditional Fuzzy C-Means (CFCM) with Gaussian weights (CFCM_GW) is accomplished for blind equalization of channels in this paper. The proposed CFCM_GW can deal with both of linear and nonlinear channels, because it searches for the optimal desired states of an unknown channel in a direct manner, which is not dependent on the type of channel structure. In the search procedure of CFCM_GW, the Bayesian likelihood fitness function, the Gaussian weighted partition matrix and the conditional constraint are exploited. Especially, in contrast to the common Euclidean distance in conventional Fuzzy C-Means(FCM), the Gaussian weighted partition matrix and the conditional constraint in the proposed CFCM_GW make it more robust to the heavy noise communication environment. The selected channel states by CFCM_GW are always close to the optimal set of a channel even when the additive white Gaussian noise (AWGN) is heavily corrupted. These given channel states are utilized as the input of the Bayesian equalizer to reconstruct transmitted symbols. The simulation studies demonstrate that the performance of the proposed method is relatively superior to those of the existing conventional FCM based approaches in terms of accuracy and speed.

적응 뉴로-퍼지 필터를 이용한 비선형 채널 등화 (Nonlinear Channel Equalization Using Adaptive Neuro-Fuzzy Fiter)

  • 김승석;곽근창;김성수;전병석;유정웅
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.366-366
    • /
    • 2000
  • In this paper, an adaptive neuro-fuzzy filter using the conditional fuzzy c-means(CFCM) methods is proposed. Usualy, the number of fuzzy rules exponentially increases by applying the grid partitioning of the input space, in conventional adaptive neuro-fuzzy inference system(ANFIS) approaches. In order to solve this problem, CFCM method is adopted to render the clusters which represent the given input and output data. Parameter identification is performed by hybrid learning using back-propagation algorithm and total least square(TLS) method. Finally, we applied the proposed method to the nonlinear channel equalization problem and obtained a better performance than previous works.

  • PDF

Polynomial Fuzzy Radial Basis Function Neural Network Classifiers Realized with the Aid of Boundary Area Decision

  • Roh, Seok-Beom;Oh, Sung-Kwun
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권6호
    • /
    • pp.2098-2106
    • /
    • 2014
  • In the area of clustering, there are numerous approaches to construct clusters in the input space. For regression problem, when forming clusters being a part of the overall model, the relationships between the input space and the output space are essential and have to be taken into consideration. Conditional Fuzzy C-Means (c-FCM) clustering offers an opportunity to analyze the structure in the input space with the mechanism of supervision implied by the distribution of data present in the output space. However, like other clustering methods, c-FCM focuses on the distribution of the data. In this paper, we introduce a new method, which by making use of the ambiguity index focuses on the boundaries of the clusters whose determination is essential to the quality of the ensuing classification procedures. The introduced design is illustrated with the aid of numeric examples that provide a detailed insight into the performance of the fuzzy classifiers and quantify several essentials design aspects.

온도 제어 시스템을 위한 뉴로-퍼지 제어기의 설계 (The Design of an Adaptive Neuro-Fuzzy Controller for a Temperature Control System)

  • 곽근창;김성수;이상혁;유정웅
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2000년도 추계학술대회 학술발표 논문집
    • /
    • pp.493-496
    • /
    • 2000
  • In this paper, an adaptive neuro-fuzzy controller using the conditional fuzzy c-means(CFCM) methods is proposed. Usually, the number of fuzzy rules exponentially increases by applying the grid partitioning of the input space, in conventional adaptive neuro-fuzzy inference system(ANFIS) approaches. In order to solve this problem, CFCM method is adopted to render the clusters which represent the given input and output data. Finally, we applied the proposed method to the water path temperature control system and obtained a better performance than previous works.

  • PDF

조건부 FCM과 방사기저함수네트웍을 이용한 유도전동기 고장 검출 (Detection and Diagnosis of Induction Motor Using Conditional FCM and Radial Basis Function Network)

  • 김승석;이대종;박장환;유정웅;전명근
    • 한국지능시스템학회논문지
    • /
    • 제14권7호
    • /
    • pp.878-882
    • /
    • 2004
  • 본 논문에서는 유도전동기 고장진단을 위하여 계층적인 하이브리드 뉴럴네트웍을 제안하였다. 시스템의 입출력 데이터에 근거하여 패턴을 분류할 때 단계별 변환 및 분류 기법을 이용하였다. 제안된 방법에서는 실험에 측정된 전류값을 주기별로 주성분분석(PCA) 기법을 이용하여 입력차원을 축소한 후 이를 조건부 FCM으로 방사기저함수의 초기치를 최적화하는데 사용하였다. 이는 주성분분석이 가지는 특성을 이용하여 데이터의 특징을 나누었으며 이를 뉴럴네트웍의 학습 기능을 이용하여 고장검출 모델의 최종 성능을 개선하는 것이다. 이를 실제 계측된 유도전동기 데이터를 이용하여 실험한 결과 제안된 방법의 성능이 기존의 방법들에 비하여 우수함을 알 수 있었다.

FCM 이산화를 이용한 스마트 홈에서 행동 모델링 (Intelligent Modeling of User Behavior based on FCM Quantization for Smart home)

  • 정우용;이제헌;윤숙현;조영완;김은태
    • 제어로봇시스템학회논문지
    • /
    • 제13권6호
    • /
    • pp.542-546
    • /
    • 2007
  • In the vision of ubiquitous computing environment, smart objects would communicate each other and provide many kinds of information about user and their surroundings in the home. This information enables smart objects to recognize context and to provide active and convenient services to the customers. However in most cases, context-aware services are available only with expert systems. In this paper, we present generalized activity recognition application in the smart home based on a naive Bayesian network(BN) and fuzzy clustering. We quantize continuous sensor data with fuzzy c-means clustering to simplify and reduce BN's conditional probability table size. And we apply mutual information to learn the BN structure efficiently. We show that this system can recognize user activities about 80% accuracy in the web based virtual smart home.