• Title/Summary/Keyword: Condensing

Search Result 407, Processing Time 0.036 seconds

The Operation Characteristics of Domestic 1kW Gas Fueled Internal Combustion Engine Cogeneration System (1kW급 가스엔진 열병합발전시스템 성능특성에 관한 연구)

  • Choi, Jae-Joon;Park, Byung-Sik;Jung, Dae-Heon;Im, Yong-Hoon;Choi, Young-Ho;Song, Dae-Sup
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.321-324
    • /
    • 2009
  • The unpredicted worldwide oil price makes the energy efficiency technology be more importance than any other period. The small cogeneration system is one of the most representative technology among the energy efficiency technologies, and recently, the household cogeneration system has been the center object of attention because of the loss of power transmission and the reasonable energy consumption relative to the household (condensing) boiler producing heat only. A tiny, 1kW of electrical output, gas fueled internal combustion engine cogeneration system was investigated. The electrical efficiency and thermal efficiency of the system were measured. With the emission characteristics, the cogeneration system was analyzed. It was showed the gas engine cogeneration system produced the lowest NOx level compared any other cogeneration system due to the three-way catalyst.

  • PDF

Development of Loop Heat Pipe Using Bubble Jet (Bubble Jet을 이용한 Loop Heat Pipe의 개발)

  • Kong, Sang-Woon;Ha, Soo-Jung;Jang, Jeong-Wan;Hwang, Jong-Ho;Son, Kil-Jae;Lee, Hyun-Jik;Kim, Jong-Soo
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1503-1506
    • /
    • 2009
  • Bubble jet loop heat pipe is a newly devised variation of heat pipe in which heat is effectively transported by the latent heat of evaporation and condensation as well as the heat capacity of circulating working fluid. The circulatory and oscillating motion of the working fluid becomes possible by the motion of bubble jet which is generated at a narrow circular gap. These bubbles are condensed at the condensing section. Bubble jet loop heat pipe makes it possible to carry heat long distances upward and horizontal directions. Because Its structure is a very simple and a low cost, it is available for the floor heating, vinyl house heating, the defrosting of heat pump system and home refrigerator.

  • PDF

Performance Comparison of Two-stage Compression Refrigeration System Using R404A (R410A용 2단 압축 1단 팽창 냉동시스템의 성능 분석)

  • Yoon, Jung-In;Choi, Kwang-Hwan;Son, Chang-Hyo;Jo, Hwan
    • Journal of Power System Engineering
    • /
    • v.18 no.1
    • /
    • pp.57-62
    • /
    • 2014
  • This paper present the performance characteristics of R404A two-stage compression refrigeration system. The operating parameters considered in this study include evaporating and condensing temperature, subcooling and superheating degree, compressor efficiency. The main results were summarized as follows: The COP of two-stage compression refrigeration system using R404A has an effect on the variation of evaporation temperature, condensation temperature, subcooling degree and compressor efficiency, but not an effect on the superheating degree. R404A two-stage compression refrigeration system is unstable because COP of this system is significantly changed when evaporating temperature and compressor efficiency decreased. In particular, when compressor efficiency decreased, COP is significantly decreased. This is inefficient for long-term use.

Effects of Working Fluids on the Performance Characteristics of Organic Rankine Cycle (ORC) Using LNG Cold Energy as Heat Sink (LNG 냉열을 열싱크로 이용하는 유기랭킨사이클(ORC)의 작동유체에 따른 성능 특성)

  • Kim, Kyoung Hoon;Ha, Jong Man;Kim, Kyung Chun
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.25 no.2
    • /
    • pp.200-208
    • /
    • 2014
  • This paper presents thermodynamic performance analysis of organic Rankine cycle (ORC) using low temperature heat source in the form of sensible energy and using liquefied natural gas (LNG) as heat sink to recover the cryogenic energy of LNG. LNG is able to condense the working fluid at a very low condensing temperature in a heat exchanger, which leads to an increased power output. Based on the mathematical model, a parametric analysis is conducted to examine the effects of eight different working fluids, the turbine inlet pressure and the condensation temperature on the system performance. The results indicate that the thermodynamic performance of ORC such as net work production or thermal efficiency can be significantly improved by the LNG cold energy.

Performance Characteristics of a Combined Regenerative Ammonia-Water Based Power Generation Cycle Using LNG Cold Energy (LNG 냉열을 이용하는 암모니아-물 복합 재생 동력 사이클의 성능 특성)

  • Kim, Kyounghoon;Oh, Jaehyeong;Jeong, Youngguan
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.24 no.6
    • /
    • pp.510-517
    • /
    • 2013
  • The ammonia-water based power generation cycle utilizing liquefied natural gas (LNG) as its heat sink has attracted much attention, since the ammonia-water cycle has many thermodynamic advantages in conversion of low-grade heat source in the form of sensible energy and LNG has a great cold energy. In this paper, we carry out thermodynamic performance analysis of a combined power generation cycle which is consisted of an ammonia-water regenerative Rankine cycle and LNG power generation cycle. LNG is able to condense the ammonia-water mixture at a very low condensing temperature in a heat exchanger, which leads to an increased power output. Based on the thermodynamic models, the effects of the key parameters such as source temperature, ammonia concentration and turbine inlet pressure on the characteristics of system are throughly investigated. The results show that the thermodynamic performance of the ammonia-water power generation cycle can be improved by the LNG cold energy and there exist an optimum ammonia concentration to reach the maximum system net work production.

Suspension Stability of Pigments in Aqueous Solution of Anionic Oligo-Type Surfactants(part 3);Synthesis of Anionic Oligo Surfactant having Fluorescent Intensity and Their Properties (올리고머형 음이온성계면활성제 수용액에서 안료의 분산안정성(제 3보);형광성이 큰 올리고머 계면활성제의 합성 및 그의 계면성)

  • Lee, H.W.;Lee, J.H.;Ju, M.J.;Nam, K.D.
    • Journal of the Korean Applied Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.109-115
    • /
    • 1997
  • Fluorescent anionic oligo surfactants were synthesized by the condensing products of long chain alkylvinylether-maleic anhydride cooligomers and resorcinol including dye structures. Their various surface activities and dispersing action were studied on the aqueous solution. These oligo surfactants exhibited a remarkable surface tension lowering property, lower foaming and a large dispersing action for the particles of ${\alpha}-copper$ phthalocyanine blue. Further it was ascertained that the binding of oligo surfactant onto the pigment surface caused the deviation towards lower wavelengths at the maximum fluorescent intensity as compared with aqueous oligo surfactant solutions, These surface active properties of the oligo surfactants may be attributed to rigid and hydrophobic structure of dye groups, besides surface-active groups of alkylether groups and carboxylic group of the anionic oligo surfactants.

Passive Prandtl-Meyer Expansion Flow with Homogeneous Condensation

  • Baek, Seung-Cheol;Kwon, Soon-Bum;Kim, Heuy-Dong
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.3
    • /
    • pp.407-418
    • /
    • 2004
  • Prandtl-Meyer expansion flow with homogeneous condensation is investigated experimentally and by numerical computations. The steady and unsteady periodic behaviors of the diabatic shock wave due to the latent heat released by condensation are considered with a view of technical application to the condensing flow through steam turbine blade passages. A passive control method using a porous wall and cavity underneath is applied to control the diabatic shock wave. Two-dimensional, compressible Navier-Stokes with the nucleation rate equation are numerically solved using a third-order TVD (Total Variation Diminishing) finite difference scheme. The computational results reproduce the measured static pressure distributions in passive and no passive Prandtl-Meyer expansion flows with condensation. From both the experimental and computational results, it is found that the magnitude of steady diabatic shock wave can be considerably reduced by the present passive control method. For no passive control, it is found that the diabatic shock wave due to the heat released by condensation oscillates periodically with a frequency of 2.40㎑. This unsteady periodic motion of the diabatic shock wave can be completely suppressed using the present passive control method.

Performance Prediction of Heat Exchanger for Waste Heat Recovery from Humid Flue Gases (습증기를 포함한 연소가스의 폐열회수를 위한 열교환기 성능 예측)

  • Jeong, Dong-Woon;Lee, Sang-Yong;Lee, Han-Ju
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.276-281
    • /
    • 2000
  • A simulation program using the mass transfer correlation was constructed to analyze 1-D simplified condensing flow across the tube bank. Higher efficiency was anticipated by reducing the flue gas temperature down below the dew point where the water vapor in the flue gas is condensed at the surface of the heat exchanger; that is, the heat transfer by the latent heat is added to that by the sensible heat. Thus, there can be an optimum operating condition to maximize the heat recovery from the flue gas. The temperature rises of the flue gas and the cooling water between the inlet and the outlet of the tube bank were compared with the experimental data reported previously. The predicted results agree well with the experimental data. Using this simulation program, the parametric studies have been conducted fur various operating conditions, such as the velocities and temperatures of the vapor/gas mixture and the cooling water, the number of the rows, and the conductivity of the wall material.

  • PDF

A Study on the Performance of Condensation Heat Transfer for Various Working Fluid of Two-Phase Closed Thermosyphons with Various Helical Grooves (나선 그루브형 열사이폰의 작동유체의 변화에 대한 응축열전달 성능에 관한 연구)

  • Han, K.I.;Cho, D.H.;Park, J.U.;Lee, S.J.
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.239-244
    • /
    • 2003
  • This study concerns the performance of condensing heat transfer in two-phase closed thermosyphons with various helical grooves. Distilled water, methanol, ethanol have been used as the working fluid. In the present work, a copper tube of the length of 1200mm and 14.28mm of inside diameter is used as the container of the thermosyphon. Each of the evaporator and the condenser section has a length of 550mm, while the remaining part of the thermosyphon tube is adiabatic section. A experimental study was carried out for analyzing the performances of having 50, 60, 70, 80, 90 helical grooves. A plain thermosyphon having the same inner and outer diameter as the grooved thermosyphons is also tested for the comparison. The type of working fluid and the numbers of grooves of the thermosyphons with various helical grooves have been used as the experimental parameters. The experimental results have been assessed and compared with existing theories. The results show that the type of working fluids are very important factors for the operation of thermosyphons. And the maximum enhancement (i.e. the ratio of the heat transfer coefficients the helical thermosyphons to plain thermosyphons) is $1.5{\sim}2$ for condensation.

  • PDF

Functional Polymeric Materials for Biomedical Application (생체의료용 기능성 고분자 재료의 개발)

  • Sung, Yong-Kiel;Song, Dae-Kyung;Sung, Jung-Suk
    • Polymer(Korea)
    • /
    • v.30 no.1
    • /
    • pp.1-9
    • /
    • 2006
  • The development of functional polymeric materials for biomedical application has progressed on the basis of functionality, biocompatibility and biodegradability. In this paper we review the functional polymeric biomaterialsbased systems and propose a range of biomedical applications in the near future. These systems include the functional biodegradable polymers synthesized in our research laboratory, biodegradable polymeric materials, thermosensitive polymeric materials, cationic polymeric materials, non-condensing polymeric biomaterials, bio-polymeric DNA matrix for tissue engineering, and polymeric biomaterials for RNA interference (RNAi) technology.