• Title/Summary/Keyword: Condenser Design

Search Result 222, Processing Time 0.046 seconds

Cables Condition Assessment for Circulating Water Pump & Condenser Extraction Pump (발전소 순환수 및 복수 계통 케이블 건전성 평가)

  • Ha, C.W.;Han, S.H.
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.614-615
    • /
    • 2007
  • There are roughly a hundred types of cables in power plants. The distribution of circuits in a nuclear plant is comprised of 20% instrument cables, 61% control cables, 13% AC power cables, 1% DC power cables, and 5% communication lines. In the nuclear power plant, medium voltage cables are generally included in the scope of systems reviewed for safety and are included in a plant's maintenance program. Medium voltage cables provide power to many critical components in plants, including feed water pumps, circulating water pumps, and condensate pumps. Among these cables, high temperature sections of cables feeding electrical power to the circulating water pump and the condenser extraction pump were found. The evaluation for these cables is performed to find the maximum allowable current and temperature. The result shows that the load current flowed about 85% of the allowable current ampacity, and the temperature of conductor at full load current did not exceed the limited temperature. Therefore, existing cables for circulating water pump and condenser extraction pump system are going to be used during design life.

  • PDF

A study of the mirror design and the fabrication for an X-ray microscope

  • Kim, Woo-Soon;Kim, Kyong-Woo;Yoon, Kwon-Ha;Kim, Dong-Hyun;Namba, Yoshiharu
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.59-64
    • /
    • 2002
  • One of the exciting research areas of the X-ray microscope is the observation of a living cell. In order to study a living cell with high resolution the order of the several tens nm, we need to improve the efficiency of mirrors which are components of an X-ray microscope system. In this paper we present the mirror design and manufacture to give a high resolution and reflectivity. We designed Wolter type I the condenser and objective mirror with the several tens of nm resolution. According to mirror design. we made the program using the visual basic. Using the new processing method as well as the ultra-precision diamond cutting, we directly processed the inside of an aluminum hulk in order to manufacture mirrors. From the experimental result, we think that the new processing method will improve a high reflectivity through the improved cutting tools and optimum cutting conditions.

  • PDF

Theoretical Analysis and Effect of Condenser In-leakage in the Secondary Systems of YGN-1, 2 (영광-1, 2호기 2차계통 복수기누설의 이론적 분석 및 영향평가)

  • Suk, Tae-Won;Lee, Yong-Woo;Kim, Hong-Tae;Park, Sang-Hoon
    • Nuclear Engineering and Technology
    • /
    • v.23 no.3
    • /
    • pp.299-305
    • /
    • 1991
  • Corrosive environment may be generated within steam generators from condenser cooling water in-leakage. Theoretical analysis of the accumulation of chloride as a sea water impurity is being carried out for the condenser cooling water used at YGN-1,2 nuclear power stations. Calculations have shown that highly concentrated chloride solution would be produced within the steam generators in the case of sea water in-leakage. Maximum allowable design condenser leak rate(0.5 gpm) leads chloride concentration of 2.3 ppm at steam generetor and 0.6 ppm at hotwell with the maximum blowdown rate and condensate purification. Concentration factor at steam generator is dependent only on both blowdoum rate and condensate purification efficiency as follows, Concentration Factor(equation omitted)(B$\neq$O) Blowdown and condensate purification are evaluated as the only effective measures to remove impurities from the secondary systems.

  • PDF

The Condensation Heat Transfer of Alternative Refrigerants for R-22 in Small Diameter Tubes (세관내 R-22 대체냉매의 응축열전달에 관한 연구)

  • Son, Chang-Hyo;Jeong, Jin-Ho;O, Jong-Taek;O, Hu-Gyu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.2
    • /
    • pp.180-186
    • /
    • 2001
  • The condensation heat transfer coefficients of pure refrigerants R-22, R-134a, and a binary refrigerant mixture R-410A flowing in a small diameter tube were investigated. The experiment apparatus consists of a refrigerant loop and a water loop. The main components of the refrigerant loop consist of a variable-speed pump, a mass flowmeter, an evaporator, and a condenser(test section). The water loop consists of a variable-speed pump, an isothermal tank, and a flowmeter. The condenser is a counterflow heat exchanger with refrigerant flowing in the inner tube and water flowing in the annulus. The test section consists of smooth, horizontal copper tube of 3.38mm outer diameter and 1.77mm inner diameter. The length of test section is 1220mm. The refrigerant mass fluxes varied from 450 to 1050kg/(㎡$.$s) and the average inlet and outlet qualities were 0.05 and 0.95, respectively. The main results were summarized as follows ; in the case of single-phase flow, the heat transfer coefficients increase with increasing mass flux. The heat transfer coefficient of R-410A was higher than that of R-22 and R-134a, and the heat transfer for small diameter tubes were about 20% to 27% higher than those predicted by Gnielinski. In the case of two-phase flow, the heat transfer coefficients also increase with increasing mass flux and quality. The condensation heat transfer coefficient of R-410A was slightly higher than that of R-22 and R-134a. Most of correlations proposed in the large diameter tube showed significant deviations with experimental data except for the ranges of low quality and low mass flux.

Characteristics of the Water Pressure Drop Considering Heat Transfer in the Evaporator and Condenser of a Water Chiller (냉수공장에서 열전달을 고려한 응축기와 증발기의 물 압력강하 특성)

  • Nguyen, Minh Phu;Lee, Geun-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.12
    • /
    • pp.1293-1300
    • /
    • 2011
  • The configurations of the evaporator and condenser of a water chiller can be determined from the trade-off between the heat transfer area, which is related to the capital cost and the pressure drop, which is associated with the operational cost. In this study, the design of the water chiller focused on minimizing the water pressure drop of both condenser and evaporator for given cooling capacity and requirements. Commercial enhanced tubes were employed to simulate real-life conditions. The results of the present analysis were compared with those obtained by HTRI software for verifying them. The results indicated that a reduction in the water pressure drop, which is associated with the short length of a tube, can be effected by decreasing the number of tube passes and increasing the number of tubes and the tube diameter. However, using a large number of tubes with smaller diameters can reduce the capital cost because the tubes are short. The reduction of the capital cost is due to the fact that a small-diameter tube has low internal thermal resistance and hence contributes to a decrease in the overall thermal resistance per unit length.

Optimal Electron Beam Characteristics by Lenses Analysis Using Scanning Electron Microscopy (주사전자현미경 렌즈의 해석을 통한 최적의 빔 특성 연구)

  • Bae, Jinho;Kim, Dong Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.1
    • /
    • pp.1-9
    • /
    • 2015
  • This paper presents a design method for optimizing the focused beam characteristics, which are mainly determined by the condenser lenses in a scanning electron microscopy (SEM) design. Sharply reducing the probe diameter of electron beams by focusing the condenser lens (i.e., the rate of condensation) is important because a small probe diameter results in high-performance demagnification. This study explored design parameters that contribute to increasing the SEM resolution efficiently using lens analysis and the ray tracing method. A sensitivity analysis was conducted based on those results to compare the effects of these parameters on beam focusing. The results of this analysis on the design parameters for the beam characteristics can be employed as basic key information for designing a column in SEM.

An Experimental Study on an Ice Storage System by a Two-Phase Closed Thermosyphon (2상 밀폐 서모사이폰을 이용한 빙축열 시스템의 성능)

  • Kyung, I.S.;Ro, S.T.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.3 no.2
    • /
    • pp.87-96
    • /
    • 1991
  • A two-phase closed thermosyphon is applied to an ice storage system. The thermosyphon is used to freeze the water in a storage tank. The experiment has been performed to investigate the effects of the important parameters such as the quantity of the fluid filled with, the ratio of the length of the evaporator to the condenser, and the temperature and the mass flow rate of the brine. It is found that the higher thermal performance of the thermosyphon is obtained as the ratio of the length of the evaporator section to that of the condenser section is decreased and the temperature of the brine is lowered. The increase of the quantity of the working fluid also favors the performance of the system. The experimental data can be utilized for the basic design of ice storage systems with thermosyphons.

  • PDF

Design and Analysis of Instantaneous Voltage Drop Compensator (순간전압강하 보상기의 설계와 해석)

  • Lee, Taeck-Kie;Hyun, Dong-Seok;Hwang, Yong-Ha
    • Proceedings of the KIEE Conference
    • /
    • 1991.07a
    • /
    • pp.478-481
    • /
    • 1991
  • This paper discusses the principle and structure of instantaneous voltage drop compensator, which protects damage from instantaneous voltage drop in systems such as computer, variable speed drive, high voltage discharge-lamp, magnet switch. When instantaneous voltage drop occurs, control circuits detect it, then produce output voltage the same as normal condition voltage. Instantaneous voltage drop compensator has condenser bank as energy storage component, so system can be made small, light weight compared with UPS. In normal state, utility source transfers power, and in instantaneous voltage drop state, the energy of condenser bank transfers power through inverter, so high efficiency, compact, and especially low cost system can be manufactured.

  • PDF

A Study on Autocascade Refrigeration System Using Carbon Dioxide and R134a Mixture

  • Park, Soo-Nam;Kim, Min-Soo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.9 no.1
    • /
    • pp.39-49
    • /
    • 2001
  • Investigation of the performance of an autocascade refrigeration system using the refrigerant mixtures of R744 (carbon dioxide) and R134a (1,1,1,2-tetrafluoroethane) has been carried out by simulation and experiment. Cycle simulation using a constant UA model in heat exchangers has been performed for R744/134a mixtures of the compositions ranging from 10/90 to 30/70 by weight. Variations of mass flow rate of refrigerant, compressor work, refrigeration capacity and COP with respect to mass fraction of R744/134a mixture were presented. Performance test has been executed in the autocascade refrigeration system by varying secondary fluid temperatures at evaporator and condenser inlets. Experimental results match quite well with those obtained from the simulation.

  • PDF

Hardware Design for the Control Signal Generation of Electron Optic by Focal Length (Focal length에 의한 전자 렌즈의 제어 신호 생성을 위한 하드웨어 설계)

  • Lim, Sun-Jong;Lee, Chan-Hong
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.5
    • /
    • pp.96-100
    • /
    • 2007
  • Condenser lens and objective lens are used to demagnify the image of the crossover to the final spot size. In lens, electrons are focused by magnetic fields. This fields is fringing field. It is important in electron focusing. Electron focusing occurs the radial component field and axial component field. Radial component produces rotational force and axial component produces radial force. Radial force causes the electron's trajectory to curve toward the optic axis and corss it. Focal length decreases as the current of lens increases. In this paper, we use the focal length for desiging the hardware of lens current control and present the results.