• Title/Summary/Keyword: Concrete slab

Search Result 1,720, Processing Time 0.029 seconds

Cyclic behaviour of concrete encased steel (CES) column-steel beam joints with concrete slabs

  • Chu, Liusheng;Li, Danda;Ma, Xing;Zhao, Jun
    • Steel and Composite Structures
    • /
    • v.29 no.6
    • /
    • pp.735-748
    • /
    • 2018
  • In this paper, the cyclic behavior of steel beam-concrete encased steel (CES) column joints was investigated experimentally and numerically. Three frame middle joint samples with varying concrete slab widths were constructed. Anti-symmetrical low-frequency cyclic load was applied at two beam ends to simulate the earthquake action. The failure modes, hysteretic behavior, ultimate load, stiffness degradation, load carrying capacity degradation, displacement ductility and strain response were investigated in details. The three composite joints exhibited excellent seismic performance in experimental tests, showing high load-carrying capacity, good ductility and superior energy dissipation ability. All three joint samples reached their ultimate loads due to shear failure. Numerical results from ABAQUS modelling agreed well with the test results. Finally, the effect of the concrete slab on ultimate load was analyzed through a parametric study on concrete strength, slab thickness, as well as slab width. Numerical simulation showed that slab width and thickness played an important role in the load-carrying capacity of such joints. As a comparison, the influence of concrete grade was not significant.

Hydro-mechanical analysis of non-uniform shrinkage development and its effects on steel-concrete composite slabs

  • Al-Deen, Safat
    • Steel and Composite Structures
    • /
    • v.26 no.3
    • /
    • pp.303-314
    • /
    • 2018
  • Drying shrinkage in concrete caused by drying and the associated decrease in moisture content is one of the most important factors influencing the long-term deflection of steel-concrete composite slabs. The presence of profiled steel decking at the bottom of the composite slab causes non-uniform drying from top and bottom of the slab resulting non-uniform drying shrinkage. In this paper, a hydro-mechanical analysis method is proposed to simulate the development of non-uniform shrinkage through the depth of the composite slab. It also demonstrates how this proposed analysis method can be used in conjunction with previously presented structural analysis model to calculate the effects of non-uniform shrinkage on the long-term deflection of the slab. The method uses concrete moisture diffusion model to simulate the non-uniform drying of composite slab. Then mechanical models are used to calculate resulting shrinkage strain from non-uniform drying and its effect on the long-term behaviour of the composite slabs. The performance of the proposed analysis method is validated against experimental data.

Correlation Analysis between Crack and TQI in RC Slab Track

  • Kwon, Se-Kon;Park, Mi-Yun;Kim, Doo-Kie;Sho, Byung-Choon;Park, Jae-Hak
    • International Journal of Railway
    • /
    • v.7 no.1
    • /
    • pp.8-15
    • /
    • 2014
  • Recently, in the total railroad construction field, concrete slab tracks have been adapted in place of ballast tracks. Because ballast tracks need frequent maintenance and are difficult to handle due to increasing maintenance costs, eventually concrete slab tracks were selected as an alternative. However, owing to the hydration heat reactions and temperature-affected shrinkage of the concrete, a variety of studies to solve maintenance problems related to concrete slab tracks are underway. This study analyzed characteristics of TQI values evaluating track irregularity, investigated the relationship between crack progress and TQI, and then evaluated the correlation between the two values. Through our analysis, we found that there is a need to supplement the problems of the current method and develop a track evaluation index which takes cracking into account. We also concluded that TQI is the main decision-making tool in track maintenance.

Advanced Composite Material Slabs for Tall Buildings (고층 건물 경량화를 위한 첨단 복합재료 상판)

  • 김덕현;심도식;김성환
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1997.10a
    • /
    • pp.126-133
    • /
    • 1997
  • For each construction material used, there is certain theoretical limit in sizes. For tall building construction, the reduction in slab weight is the first step to take in order to break such size limits. In this paper, the feasibility of such objective is proven and given by numerical analysis result. For a typical building slab, both concrete and advanced composite sandwich panels are considered. The concrete slab is treated as a special orthotropic plate to obtain more accurate result. For each panel, the deflection under the dead and live loads is compared, since both tensile and compressive strengths of the composites are far more higher than those of concrete. All types of sandwich panels considered, except one case, have weights less than one tenth of that of reinforced concrete slab, with deflections less than that of the concrete slab. The cost analysis result and manufacturing methods will be reported later.

  • PDF

Numerical investigation on punching shear of RC slabs exposed to fire

  • Sadaghian, Hamed;Farzam, Masood
    • Computers and Concrete
    • /
    • v.23 no.3
    • /
    • pp.217-233
    • /
    • 2019
  • This paper describes the numerical modelling of an interior slab-column connection to investigate the punching shear resistance of reinforced concrete (RC) slabs under fire conditions. Parameters of the study were the fire direction, flexural reinforcement ratio, load levels, shear reinforcement and compressive strength of concrete. Moreover, the efficiency of the insulating material, gypsum, in reducing the heat transferred to the slab was assessed. Validation studies were conducted comparing the simulation results to experiments from the literature and common codes of practice. Temperature dependencies of both concrete and reinforcing steel bars were considered in thermo-mechanical analyses. Results showed that there is a slight difference in temperature endurance of various models with respect to concrete with different compressive strengths. It was also concluded that compared to a slab without gypsum, 10-mm and 20-mm thick gypsum reduce the maximum heat transferred to the slab by 45.8% and 70%, respectively. Finally, it was observed that increasing the flexural reinforcement ratio changes the failure mode from flexural punching to brittle punching in most cases.

A Behavior Analysis of HSR concrete slab track under Variety of Rail pad stiffness on fatigue effect (피로효과를 고려한 레일패드 스프링계수 변화에 따른 콘크리트 슬래브 궤도의 거동분석)

  • Eom, Mac;Choi, Jung-Youl;Chun, Dae-Sung;Park, Yong-Gul
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.340-350
    • /
    • 2007
  • The major objective of this study is to investigate the fatigue effects of rail pad on High Speed Railway with concrete slab track system. It analyzed the mechanical behaviors of HSR concrete slab track with applying rail pad stiffness based on fatigue effect(hardening and increasing stiffness) on the 3-dimensional FE analysis and laboratory test for static & dynamic characteristics. As a result, the hardening of rail pad due to fatigue loading condition are negative effect for the static & dynamic response of concrete slab track which is before act on fatigue effect. The analytical and experimental study are carried out to investigate rail pad on fatigue effected increase vertical acceleration and stress and decrease suitable deflection on slab track. And rail pad based on fatigue effect induced dynamic maximum stresses, the increase of damage of slab track is predicted by adopting fatigue effected rail pad. after due consideration The servicing HSR concrete slab track with resilient track system has need of the reasonable determination after due consideration fatigue effect of rail pad stiffness which could be reducing the effect of static and dynamic behavior that degradation phenomenon of structure by an unusual response characteristic and a drop durability.

  • PDF

Design Methodology of Gap Slab for Post-Tensioned Prestressed Concrete Pavement (포스트텐션 콘크리트 포장의 Gap Slab 설계 방안)

  • Park, Hee-Beom;Kim, Seong-Min;Shim, Jae-Soo
    • International Journal of Highway Engineering
    • /
    • v.12 no.2
    • /
    • pp.137-146
    • /
    • 2010
  • This study was conducted to develop the design methodology of gap slabs for the post-tensioned concrete pavement (PTCP). The gap slabs were considered as unbonded, half bonded, and bonded types. According to the types of the gap slabs, the curling stresses were investigated first under the environmental loads. The stresses due to the vehicle loads were analyzed considering both the single and tandem axles. The method to calculate the prestressing amount was suggested by comparing the combined stresses due to both loads and the allowable tensile stress of concrete. The prestressing amount for the unbonded type gap slab could be designed by considering only the gap slab; however, for the half bonded and bonded gap slabs, the whole PTCP slab should be analyzed to properly design the prestressing amount.

An Experimental Study on Vibration Control of Concrete Slab (콘크리트슬래브의 진동제어에 관한 실험적 연구)

  • Byun, Keun Joo;Lho, Byeong Cheol
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.3
    • /
    • pp.473-485
    • /
    • 1994
  • Vibration control of concrete slab mounting precision instrument is needed to make the working vibration environments in frequency domain as well as time domain. In order to take the vibration control countermeasures, signal and system analyses of the concrete slab are processed. Through them the dynamic responses of concrete slab are obtained in frequency domain, and frequency response functions are acquired by exciting the concrete slab and measuring dynamic responses at various points across its surface. The dynamic characteristics of concrete slab are determined by experimental modal analysis. Based on modal parameters from a set of frequency response function measured, it is possible to investigate the effects of potential design modifications and reduce the dynamic response of concerned point by moving or suppressing an objectionable modal resonance conditions through structural dynamics modification.

  • PDF

Failure characteristics of columns intersected by slabs with different compressive strengths

  • Choi, Seung-Ho;Hwang, Jin-Ha;Han, Sun-Jin;Kang, Hyun;Lee, Jae-Yeon;Kim, Kang Su
    • Structural Engineering and Mechanics
    • /
    • v.74 no.3
    • /
    • pp.435-443
    • /
    • 2020
  • The objective of this study was to determine the effective compressive strength of a column-slab connection with different compressive strengths between the column and slab concrete. A total of eight column specimens were fabricated, among which four specimens were restrained by slabs while the others did not have any slab, and the test results were compared with current design codes. According to ACI 318, the compressive strength of a column can be used as the effective compressive strength of the column-slab connection in design when the strength ratio of column concrete to slab concrete is less than 1.4. Even in this case, however, this study showed that the effective compressive strength decreased. The specimen with its slab-column connection zone reinforced by steel fibers showed an increased effective compressive strength compared to that of the specimen without the reinforcement, and the interior column specimens restrained with slabs reached the compressive strength of the column.

Debonding strain for steel-concrete composite slabs with trapezoidal metal deck

  • Claudio Bernuzzi;Marco A. Pisani;Marco Simoncelli
    • Steel and Composite Structures
    • /
    • v.49 no.1
    • /
    • pp.19-30
    • /
    • 2023
  • Steel-concrete composite slabs represent a very efficient floor solution combining the key performance of two different materials: the steel and the concrete. Composite slab response is governed by the degree of the interaction between these two materials, mainly depending by chemical and mechanical bond. The latter is characterized by a limited degree of confinement if compared with the one of the rebars in reinforced concrete members while the former is remarkably influenced by the type of concrete and the roughness of the profiled surface, frequently lubricated during the cold-forming manufacturing processes. Indeed, owing to the impossibility to guarantee a full interaction between the two materials, a key parameter governing slab design is represented by the horizontal shear-bond strength, which should be always experimentally estimated. According to EC4, the design of the slab bending resistance, is based on the simplified assumption that the decking sheet is totally yielded, i.e., always in plastic range, despite experimental and numerical researches demonstrate that a large part of the steel deck resists in elastic range when longitudinal shear collapse is achieved. In the paper, the limit strain for composite slab, which corresponds to the slip, i.e., the debonding between the two materials, has been appraised by means of a refined numerical method used for the simulation of experimental results obtained on 8 different composite slab types. In total, 71 specimens have been considered, differing for the properties of the materials, cross-section of the trapezoidal profiled metal sheets and specimen lengths.