• Title/Summary/Keyword: Concrete slab

Search Result 1,734, Processing Time 0.028 seconds

Lateral-resisting Structural Systems for Tall Modular Buildings (모듈러 건축물의 수평력 저항 구조시스템)

  • Lee, Chang-Hwan;Chung, Kwang-Ryang
    • Journal of Korean Association for Spatial Structures
    • /
    • v.16 no.2
    • /
    • pp.79-88
    • /
    • 2016
  • Modular buildings are constructed by assembling modular units which are prefabricated in a factory and delivered to the site. However, due to a problem of noise between floors, concrete slab is usually poured at the top or bottom level of a modular unit in Korea. This greatly increases the weight of buildings, but designing vertical members of modular units to resist overall gravity loads is very inefficient. In this study, considering domestic building construction practices, feasible structural systems for tall modular buildings are proposed in which separate steel frames and reinforced concrete core walls are designed to resist gravity and lateral loads. To verify performance, a three-dimensional structural analysis has been performed with two types of prototype buildings, i.e., a residential building and a hotel. From the results, wind-induced lateral displacements and seismic story drifts are examined and compared with their limit values. Between the two kinds of buildings, the efficiency of the proposed system is also evaluated through a comparison of the weight of structural components. Finally, the effect of a floor diaphragm on the overall behavior is analyzed and discussed.

A Study on the Adaptable Long Life Multi-dwelling Housing Design in Korea (융통성을 고려한 장수명 공동주택 디자인에 관한 연구)

  • Kim, Jin-Hee
    • Korean Institute of Interior Design Journal
    • /
    • v.15 no.6 s.59
    • /
    • pp.172-177
    • /
    • 2006
  • Most of the Korean multi-dwelling houses have less than 20 years of lifespan. Because the environmental issues such as energy consumption, limited resources, and demolition waste problems became been more and more critical, we now need to focus on long lasting and adaptable buildings. Korean wall bearing apartment buildings are constructed with site cast concrete for core, exterior, and interior together with pipes varied, so when the buildings are old and life style of the users changes, it is difficult to maintain and renovate these buildings. In this study, to resolve the problems described above, two types of Korean long life multi-dwelling housing models which represent improved durability and adaptability responding user's needs and life style changes were proposed with various methods as follows: Either column and beam structure or flat slab structure was used to utilize space better. To make maintenance easier and renovation economical for both public space and each unit, plumbing pipes, ducts, and conduits were clustered at the cores and public corridors with access doors and light weight partitions with steel studs and raised floors or above-ceiling spaces were used in lieu of site cast concrete walls and floor slabs with varied pipes.

Experimental and numerical studies on concrete encased embossments of steel strips under shear action for composite slabs with profiled steel decking

  • Seres, Noemi;Dunai, Laszlo
    • Steel and Composite Structures
    • /
    • v.11 no.1
    • /
    • pp.39-58
    • /
    • 2011
  • The subject of the ongoing research work is to analyze the composite action of the structural elements of composite slabs with profiled steel decking by experimental and numerical studies. The mechanical and frictional interlocks result in a complex behaviour and failure under horizontal shear action. This is why the design characteristics can be determined only by standardized experiments. The aim of the current research is to develop a computational method which can predict the behaviour of embossed mechanical bond under shear actions, in order to derive the design characteristics of composite slabs with profiled steel decking. In the first phase of the research a novel experimental analysis is completed on an individual concrete encased embossment of steel strip under shear action. The experimental behaviour modes and failure mechanisms are determined. In parallel with the tests a finite element model is developed to follow the ultimate behaviour of this type of embossment, assuming that the phenomenon is governed by the failure of the steel part. The model is verified and applied to analyse the effect of embossment's parameters on the behaviour. In the extended investigation different friction coefficients, plate thicknesses, heights and the size effects are studied. On the basis of the results the tendencies of the ultimate behaviour and resistance by the studied embossment's characteristics are concluded.

Parametric Analysis on Construction Conditions to Control Thermal Cracks in Subway Concrete Structure (지하철 구조물의 온도균열제어를 위한 시공조건별 해석적 영향 분석)

  • 김연태;김상철
    • Journal of the Korean Society for Railway
    • /
    • v.7 no.4
    • /
    • pp.312-318
    • /
    • 2004
  • The wall in a subway structure is easily subject to crack occurrence since its expansion and shrinkage associated with hydration heat reaction is constrained by the slab. The greater problem is that the crack in the wall may be developed to pass through thickness and eventually deteriorate the structure due to rusting of reinforced steel. Thus, this study aims at controlling thermal cracks as much as possible and determining an optimized size of concrete placement through hydration heat analysis. For this study, effects of placement height, length, temperature and types of cement on the thermal cracks were evaluated by temperature rise, thermal stress and crack index. As results of parametric study, it was found that placement height and length do not have an effect on the temperature rise but have significant one on thermal stress which relates to direct possibility of thermal crack occurrence. This means that proper selection of size balancing internal constraint with external one is much more important than reducing the placement height and length simply. In order to prevent from thermal cracks most effectively, in addition, it was noted to reduce placement temperature and to use the cement blended with mineral admixture.

Algorithm for the Reinforced Concrete Framework Materials Take-off (철근콘크리트조의 골조물량산출 알고리즘)

  • Kim Tae-Hui;Hong Chae-Gon;Kim Sun-Kuk
    • Korean Journal of Construction Engineering and Management
    • /
    • v.4 no.1 s.13
    • /
    • pp.114-121
    • /
    • 2003
  • The precise quantity of materials is not yet taken off by the CAD system although it has Influenced in design productivity and automatic estimate. And various estimate systems developed so far deal with the quantity take-off of building members separately, which caused to over-estimate the part of each member. Therefore, the purpose of this paper is to develop algorithms of more precise estimate than that of current estimate by solving boundary conditions of the connection parts of building members, such as column, girder, beam, wall and slab. The algorithms are proposed to take off the quantity of concrete and form work and they will be used for the estimate of building structure more precisely and automatically than ever.

The Development of Damping Material for Standard Floating Floor Type-5 Using Ethylene Vinyl Acetate co-polymer(EVA) & Urethane Form (EVA와 경질우레탄폼을 이용한 표준바닥구조 벽식-5용 단열완충재 개발)

  • Park, Cheol-Yong;Kim, Sang-Hoon;Jang, Dong-Woon;Jang, Cheol-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.461-464
    • /
    • 2004
  • The reduction effect of floor impact noise depends on the various factors such as stiffness and thickness of the concrete slab, finishing If ceiling materials and the composition method. Among the rest it is well known that floating floor system is more effective. Standard floating floor(SFF) type-2 consisted of 50mm lightweight aerated concrete(LAC) and 20mm damping material has been widely used. But LAC construction problem on dry damping material occurred and the reduction effect of floor impact noise has bare minimum qualifications. Thus the aim of this study is to develop 40mm composite damping material(Soundzero Plus) for SFF type-5 which substitute LAC and damping material. 'Soundzero Plus' is satisfied with quality requirement for damping material for SFF. The heat transition rate, $0.45W/m^2{\cdot}K$ is more effective 55% about than the regulation. The test results of floor impact noise by using 'Soundzero Plus' are showed good improvement about 12dB (tested by tapping machine) and 4dB (tested by bang machine) between before and after.

  • PDF

Numerical study on effect of integrity reinforcement on punching shear of flat plate

  • Ahsan, Raquib;Zahura, Fatema T.
    • Computers and Concrete
    • /
    • v.20 no.6
    • /
    • pp.731-738
    • /
    • 2017
  • Reinforced concrete flat plates consist of slabs supported directly on columns. The absence of beams makes these systems attractive due to advantages such as economical formwork, shorter construction time, less total building height with more clear space and architectural flexibility. Punching shear failure is usually the governing failure mode of flat plate structures. Punching failure is brittle in nature which induces more vulnerability to this type of structure. To analyze the flat plate behavior under punching shear, twelve finite element models of flat plate on a column with different parameters have been developed and verified with experimental results. The maximum range of variation of punching stress, obtained numerically, is within 10% of the experimental results. Additional finite element models have been developed to analyze the influence of integrity reinforcement, clear cover and column reinforcement. Variation of clear cover influences the punching capacity of flat plate. Proposed finite element model can be a substitute to mechanical model to understand the influence of clear cover. Variation of slab thickness along with column reinforcement has noteworthy impact on punching capacity. From the study it has been noted that integrity reinforcement can increase the punching capacity as much as 19 percent in terms of force and 101 percent in terms of deformation.

Estimation of impact characteristics of RC slabs under sudden loading

  • Erdem, R. Tugrul
    • Computers and Concrete
    • /
    • v.28 no.5
    • /
    • pp.479-486
    • /
    • 2021
  • Reinforced concrete (RC) slabs are exposed to several static and dynamic effects during their period of service. Accordingly, there are many studies focused on the behavior of RC slabs under these effects in the literature. However, impact loading which can be more effective than other loads is not considered in the design phase of RC slabs. This study aims to investigate the dynamic behavior of two-way RC slabs under sudden impact loading. For this purpose, 3 different simply supported slab specimens are manufactured. These specimens are tested under impact loading by using the drop test setup and necessary measurement devices such as accelerometers, dynamic load cell, LVDT and data-logger. Mass and drop height of the hammer are taken constant during experimental study. It is seen that rigidity of the specimens effect experimental results. While acceleration values increase, displacement values decrease as the sizes of the specimens have bigger values. In the numerical part of the study, artificial neural networks (ANN) analysis is utilized. ANN analysis is used to model different physical dynamic processes depending upon the experimental variables. Maximum acceleration and displacement values are predicted by ANN analysis. Experimental and numerical values are compared and it is found out that proposed ANN model has yielded consistent results in the estimation of experimental values of the test specimens.

Steel-UHPC composite dowels' pull-out performance studies using machine learning algorithms

  • Zhihua Xiong;Zhuoxi Liang;Xuyao Liu;Markus Feldmann;Jiawen Li
    • Steel and Composite Structures
    • /
    • v.48 no.5
    • /
    • pp.531-545
    • /
    • 2023
  • Composite dowels are implemented as a powerful alternative to headed studs for the efficient combination of Ultra High-Performance Concrete (UHPC) with high-strength steel in novel composite structures. They are required to provide sufficient shear resistance and ensure the transmission of tensile forces in the composite connection in order to prevent lifting of the concrete slab. In this paper, the load bearing capacity of puzzle-shaped and clothoidal-shaped dowels encased in UHPC specimen were investigated based on validated experimental test data. Considering the influence of the embedment depth and the spacing width of shear dowels, the characteristics of UHPC square plate on the load bearing capacity of composite structure, 240 numeric models have been constructed and analyzed. Three artificial intelligence approaches have been implemented to learn the discipline from collected experimental data and then make prediction, which includes Artificial Neural Network-Particle Swarm Optimization (ANN-PSO), Adaptive Neuro-Fuzzy Inference System (ANFIS) and an Extreme Learning Machine (ELM). Among the factors, the embedment depth of composite dowel is proved to be the most influential parameter on the load bearing capacity. Furthermore, the results of the prediction models reveal that ELM is capable to achieve more accurate prediction.

A Study on the Development of Precast Concrete Modular and its Application Onsite (프리캐스트 콘크리트 모듈러 개발 및 현장적용에 관한 연구)

  • Bae, Kyu-Woong;Boo, Yoon-Seob;Shin, Sang-Min
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.27-28
    • /
    • 2023
  • Currently, the Off-Site Construction (OSC) construction method, which emphasizes the minimization of field work, is being emphasized at construction sites due to the lack of construction skilled manpower, extreme weather, and the Severe Disaster Punishment Act. In this study, we developed a stacked PC modular, which is a method of stacking PC modules, and solved the lifting problem by reducing the weight of the unit module, which is emerging as the biggest disadvantage of PC modules, to around 20 tons. For the connection between modules, structural safety was secured through repeated history tests of the wall and slab connection. Walls and slabs satisfied all statutory fire resistance times through fire resistance tests, and residential performance was evaluated to be satisfactory through mock-up demonstration. The developed PC modular has been applied to the construction of commercial houses, detached houses, shopping malls, churches, etc., and has design results for many buildings such as dormitories, detached houses with 4 floors or more, and resorts, so it is expected that an atmosphere of revitalization of construction methods will be created.

  • PDF