• Title/Summary/Keyword: Concrete rod

Search Result 135, Processing Time 0.025 seconds

Bond Strength of Super-CFRP Rod in Concrete

  • Seo, Sung-Tag
    • International Journal of Concrete Structures and Materials
    • /
    • v.18 no.1E
    • /
    • pp.29-34
    • /
    • 2006
  • Elastic modulus, tensile and bond capacities are important factors for developing an effective reinforcing action of a flexural member as a reinforcing material for concrete structures. Reinforcement must have enough bond capacity to prevent the relative slip between concrete and reinforcement. This paper presents an experimental study to clarify the bond capacity of prestressed carbon fiber reinforced polymer(CFRP) rod manufactured by an automatic assembly robot. The bond characteristics of CFRP rods with different pitch of helical wrapping were analyzed experimentally. As the result, all types of CFRP rods show a high initial stiffness and good ductility. The mechanical properties of helical wrapping of the CFRP rods have an important effect on the bond of these rods to concrete after the bond stress reached the yield point. The stress-slip relationship analyzed from the pull-out test of embedded cables within concrete was linear up to maximum bond capacity. The deformation within the range of maximum force seems very low and was reached after approximately 1 mm. The average bond capacity of CF20, CF30 and CF40 was about 12.06 MPa, 12.68 MPa and 12.30 MPa, respectively. It was found that helical wrapping was sufficient to yield bond strengths comparable to that of steel bars.

A Study on the Verification Test for a Deformable Rod Sensor (변형봉 센서 검증실험에 관한 연구)

  • 김상일;최용규;이민희
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.5
    • /
    • pp.35-47
    • /
    • 2003
  • In the conventional axial load transfer analysis for composite piles (i.e., steel pipe pile filled with concrete), it was assumed that the concrete's strain is same as the measured steel's strain and the elastic modulus of the steel and the concrete calculated by formular as prescribed by specification is used in calculation of pile axial load. But, the pile axial load calculated by conventional method had some difference with the actual pile load. So, the behavior of a composite pile could not be analyzed exactly. Thus, the necessity to measure the strain for each pile components was proposed. In this study, the verification test for DRS (Deformable Rod Sensor) developed to measure the strain of each pile component (i.e., the steel and the concrete) was performed. In the calculation of pile axial load using the DRS, elastic modulus of concrete could be determined by the uniaxial compression test for the concrete cylinder samples made in the test site and an average tangential modulus in the stress range of (0.2∼0.6)f$_ck$ was taken.

Tensile Strength of Post-Installed High-Shear Ring Anchors (HRA) After Shear Loading (전단 하중을 경험한 후설치 고전단 링앵커의 인장 강도)

  • Jeon, Sang Hyeon;Chun, Sung-Chul;Kim, Jae Yeol
    • Journal of Korean Association for Spatial Structures
    • /
    • v.18 no.4
    • /
    • pp.61-68
    • /
    • 2018
  • Tensile load tests were conducted on High-Shear Ring Anchors (HRAs) after shear load had been applied to the HRAs, which had been developed to reduce the number of the anchors. Test variables include the embedment length of the rod and the width of the specimens and a total of 12 specimens were tested. Test results show that the HRAs pulled out due to bond failure or steel failure occurred in case that the HRAs were installed to the members with 300mm or greater width and the embedment length of 160mm (the actual embedment of rod is 140mm) or deeper. Except 4 HRAs showing steel failure of rod, the minimum and average of test-to-prediction by ACI 318-14 ratios are 1.18 and 1.79, respectively. The tensile strength of HRAs, after shear load was applied to the HRAs, can be safely evaluated by the minimum among the concrete breakout strength and bond strength with the actual embedment length of the rod.

An Experimental Study on the Strengtheing Effect of Reinforced Concrete Beams Strengthened by CFRP Rod (탄소섬유막대로 보강한 철근콘크리트 보의 보강효과에 관한 실험적 연구)

  • Park, Sung-Moo;Kim, Jae-Hun;Park, Kwang-Seob
    • Journal of Korean Association for Spatial Structures
    • /
    • v.4 no.3 s.13
    • /
    • pp.85-91
    • /
    • 2004
  • Rehabilitations of reinforced concrete(RC) structures using advanced fibre-reinfored plastic(FRP) composites has become very popular in last few years. Typical method of strengthening strategy using FRP composite is bonding the CFRP plate or sheet on the surface of existing concrete structures. Many researches, however, have shown that bonding FRP plate or sheet on the surface of concrete has tendancy to debond prematurely induced by stress concentrations at the end of the plate. In order for overcoming the premature failure, the filling-up method which places FRP-rod into the existing concrete sawing groove has been developed. Through filling-up test results, aims of this research is to investigate the efficiencies of the filling-up method and is to determine the availabilities of traditional flexural theories that has provided all over the world.

  • PDF

A Study on Shear Resisting Effect of Reinforced Concrete Beams Filling-up Carbon Fiber Rod Plastic (전단보강근이 배근된 철근콘크리트 보의 CFRP전단보강효과에 관한 실험적 연구)

  • Kim, Woo-Hyoun;Lee, Hyoung-Seok;Kim, Young-Sik;Park, Sung-Moo
    • Proceeding of KASS Symposium
    • /
    • 2005.05a
    • /
    • pp.175-182
    • /
    • 2005
  • The purpose of this study is to investigate experimentally the shear resisting behavior of the reinforced concrete beams strengthened with reinforcement materials(CFRP). Ten specimens were manufactured and tested under static monotonic loading. The main variables in the test were a space of steel reinforcement and direction of CFRP reinforcement. The test result Indicated that the method of CFRP increase significantly the shear strength of a reinforced concrete beam

  • PDF

A Study on the Physical Properties of Cement Composites with High-strength Vinylon Fibers (고강도 비닐론 섬유로 보강된 빛 투과 콘크리트의 투명 봉 간격 변화에 따른 물리적 특성 연구)

  • Han, Yoon Jung;Kim, Soo Yeon;Kim, Byoung Il
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.11a
    • /
    • pp.100-101
    • /
    • 2017
  • LEFC(Light Emotion Friendly Conceret) was developed in Korea with demands of esthentic requirements in line with the recent developmental trend of concrete technology. The LEFC is made by inserting transparent transparent rods, and this forms a heterogeneous structure in the concrete matrix causing the LEFC substrate to crack due low adhesion between the rod and the cement. In this study, as a way to strengthen the bonding to the rod inserted in the LEFC, high strength vinylon fibers of varying mixture ratios were applied and physical properties were tested accordingly. To study the effect of different spacing of the bars on the LEFC, physical property testing was conducted on respective specimens with two different diameters (5mm, 10mm) inserted in different intervals of spacing (10mm, 15mm, and 20mm).

  • PDF

Self-Diagnosis for Fracture Prediction of Concrete Reinforced by New Type Rib CFGFRP Rod and CF Sheet (신형 리브재 CFGFRP 보강근 및 CF 보강시트로 보강된 콘크리트의 파괴예측 자가진단)

  • Park, Seok-Kyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.2
    • /
    • pp.115-123
    • /
    • 2007
  • For investigating self-diagnosis applicability, a method based on monitoring the changes in the electrical resistance of carbon fiber reinforced concrete has been tested. Then after examining change in the value of electrical resistance at each flexural weight-stage of carbon fiber in CFGFRP (carbon fiber and glass fiber reinforcing plastic) with new type rib and carbon sheet for concrete reinforcing, the correlations of electrical resistance and load as a function of strain, deflection were analyzed. As the results, it is clarified that when carbon fiber rod, rib and sheet fracture, the electrical resistance of it increase largely, and specially in case of CFGFRP, afterwards glass fiber tows can be resist the load due to the presence of the hybrid (carbon and glass) reinforced fiber. Therefore, it can be recognized that reinforcing bar and new type rib of CFGFRP and sheet of CF could be applied for self-diagnosis of fracture in reinforced FRP concrete.

A Study on the Transient Ground Impedance Modeling for Rod-type Grounding Electrodes by Frequency and Time Domain Characteristic Tests (주파수 및 시간영역 특성시험에 의한 봉형 접지전극의 과도 접지임피던스 모델링에 관한 연구)

  • Kim, Jong-Uk;Kim, Kyung-Chul;Shin, Pan-Seok;Choi, Jong-Ki;Choi, Sun-Kyu;Kim, Dong-Myung
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.2
    • /
    • pp.133-141
    • /
    • 2010
  • Grounding system insures a reference potential point for electric devices and also provides a low impedance path for fault currents in the earth. The ground impedance as function of frequency is necessary for determining its performance since fault currents could contain a wide range of frequencies. Copper and concrete rod electrodes are the most commonly used grounding electrode in electric distribution systems. In this paper, the ground impedance of copper and concrete rods has been measured by frequency and time domain characteristic tests. An equivalent transfer function model of the ground impedance is identified from the measured values by using ARMA method and evaluated by comparing conventional grounding impedances.

Extensometers results correction in concrete dams: A case study in RCC Zhaveh Dam

  • Ziaei, Ahad;Ahangari, Kaveh;Moarefvand, Parviz;Mirzabozorg, Hasan
    • Structural Monitoring and Maintenance
    • /
    • v.4 no.1
    • /
    • pp.17-31
    • /
    • 2017
  • Since extensometers are used to determine the absolute deformation of foundation and abutments and all results are obtained in reference to the base rod, the accuracy of these results has been constantly a subject of debate. In this regard, locating and installing extensometers outside the range of effect zone is also another challenge. The main purpose of this paper is to investigate and modify extensometers results based on the mentioned issues. For this aim, the concrete RCC Zhaveh dam in Iran was selected as the case study. To study the results of extensometers installed in this dam, first, the 3DEC_DP 5.00 software was applied for numerical modeling. Parameters such as discontinuities, dead load and piezometric pressure in the interface of concrete and rock were considered. Next, using the results obtained from 6 extensometers in foundation and abutments and 4 clinometers in dam body, the numerical model was calibrated through back analysis method. The results indicate that the base rod is moved and is not recommended being used as the base point. In other words, because installation of base anchor outside the range of effect zone is not possible due to the operational and economic considerations, the obtained results are not accurate enough. The results indicate a considerable 2-3 mm displacement of the base rod (location of the base anchor) in reference to the real zero point location, which must be added to the base rod results.

A Study on the Shear Resisting Effect of Filling-up Carbon Fiber Rod Plastic in Reinforced Concrete Beams with web Reinforcement (전단보강근이 있는 철근콘크리트보의 매립형 CFRP 전단보강효과에 대한 연구)

  • Kim, Woo-Hyoun;Lee, Hyoung-Seok;Kim, Young-Sik;Park, Sung-Moo
    • Journal of Korean Association for Spatial Structures
    • /
    • v.5 no.2 s.16
    • /
    • pp.65-71
    • /
    • 2005
  • The reinforced concrete becomes deteriorated. In strengthening of reinforced concrete structure, it is recently useing FRP. In research, flexural strengthening of reinforced concrete beam can be Efficient design. But shear srengthening og reinforced concrte beam can't be Efficient design by variable cause. The purpose of this study is to investigate the shear resisting effect of filling-up CFRP in reinforced concrete beams with web reinforced. Ten specimens were manufactured and tested. In the test result, it was analysis. The main variables in the test were a space of web reinforcement and a direction of CFRP.

  • PDF