• Title/Summary/Keyword: Concrete resistivity

Search Result 132, Processing Time 0.022 seconds

Cathodic Protection Behavior of Coastal Bridge Structure with Sacrificial Anode Cathodic Protection System (희생양극식 음극방식이 적용된 해안 교량 구조물의 방식거동)

  • Ha, Ji-Myung;Jin, Chung-Kuk;Jeong, Jin-A
    • Corrosion Science and Technology
    • /
    • v.11 no.6
    • /
    • pp.242-246
    • /
    • 2012
  • This measurement represents the effectiveness of sacrificial anode cathodic protection (SACP) system in a coastal bridge structure. To verify the cathodic protection (CP) effect, the monitoring sensor (DMS-100) that could measure potential, corrosion rate, current, concrete resistivity, and temperature was embedded. The measurement conducted for three years after CP system was installed. Specifically, due to the fact that fresh water and sea water was repeated in the bridge structure, this bridge structure presented special CP behavior. Measurement factors were CP potential, CP current, concrete resistivity, and depolarization potential. In addition, visual inspection was also carried out. As a result of current and depolarization measurement, CP system was well activated in most piers.

Evaluation of Setting Delay in Mortar Adding Superplasticizer Using Electrical Resistivity Measurement (전기비저항 측정법을 이용한 유동화 모르타르의 응결 지연 현상 평가)

  • Lee, Hanju;Yim, Hong Jae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.6
    • /
    • pp.9-15
    • /
    • 2018
  • According to the development and use of self-consolidating concrete in field, interest in material properties of early-age concrete is rising. Setting time with hydration process of cement is one of significant indicator to evaluate the early-age material properties of concrete, various nondestructive methods including penetration resistance measurement have been proposed to estimate setting time. This study performed an experimental approach to evaluate setting time delay in mortar adding superplasticizer using electrical resistivity measurement. For this purpose, total nine types of mortar samples were prepared, and its electrical resistivity was monitoring during 24h after mixing. From the experimental result, rising time of electrical resistivity was used to evaluate setting delay of mortar, and penetration resistance was also measured for comparison. In addition, dynamic elastic modulus and compressive strength of 1day mortar were measured to investigate a possibility the use of electrical resistivity measurement for evaluation of early-age material properties.

Evaluation of incorporating metakaolin to evaluate durability and mechanical properties of concrete

  • Joshaghani, Alireza;Moeini, Mohammad Amin;Balapour, Mohammad
    • Advances in concrete construction
    • /
    • v.5 no.3
    • /
    • pp.241-255
    • /
    • 2017
  • Concrete is known to be the most used construction material worldwide. The environmental and economic aspects of Ordinary Portland Cement (OPC) containing concrete have led research studies to investigate the possibility of incorporating supplementary cementitious materials (SCMs) in concrete. Metakaolin (MK) is one SCM with high pozzolanic reactivity generated throughout the thermal activation of high purity kaolinite clay at a temperature ranging from $500^{\circ}C$ to $800^{\circ}C$. Although many studies have evaluated the effect of MK on mechanical properties of concrete and have reported positive effects, limited articles are considering the effect of MK on durability properties of concrete. Considering the lifetime assessment of concrete structures, the durability of concrete has become of particular interest recently. In the present work, the influences of MK on mechanical and durability properties of concrete mixtures are evaluated. Various experiments such as slump flow test, compressive strength, water permeability, freeze and thaw cycles, rapid chloride penetration and surface resistivity tests were carried out to determine mechanical and durability properties of concretes. Concretes made with the incorporation of MK revealed better mechanical and durability properties compared to control concretes due to combined pozzolanic reactivity and the filler effect of MK.

Application of DC Resistivity Survey from Upper Portion of Concrete and Geostatistical Integrated Analysis (콘크리트 상부에서 전기비저항 탐사 적용 및 지구통계학적 복합 해석)

  • Lee, Heuisoon;Oh, Seokhoon;Chung, Hojoon;Noh, Myounggun;Ji, Yoonsoo;Ahn, Taegyu;Song, Sung-Ho;Yong, Hwan-Ho
    • Journal of the Korean earth science society
    • /
    • v.35 no.1
    • /
    • pp.29-40
    • /
    • 2014
  • A DC resistivity survey was performed to detect anomalies beneath concrete pavement. A set of high conductive media and planar electrodes were used to lessen the effect's a high contact resistance of concrete. Results of the resistivity survey were analyzed and compared with those of other geophysical surveys such as Ground Penetration Radar (GPR), Impulse Response (IR), and Multi-channel Analysis of Surface Waves (MASW), which were carried out in the same location. The results of resistivity survey showed a high resistive distribution in the section of sink and pavement where a pattern of reinforcement was observed through the GPR survey. Also, a comparison of results between the IR and resistivity surveys indicated that the high resistivity was produced by the high dynamic stiffness in the reinforced section. The co-Kriging of both the results of DC resistivity and MASW surveys at the same location showed that an integrated geostatistical analysis is able to give more accurate description on the anomalous subsurface region than can a separate analysis of each geophysical approach. This study suggests that the integrated geostatistical approaches were used for a decision-making process based on the geophysical surveys.

A Study on the Properties of Electrical Conductive Cement Mortar (전지전도성 시멘트모르타르의 특성에 관한 연구)

  • Choi, Gil-Seob;Kim, Bong-Chan;Kim, Wan-Ki;Soh, Yang-Seob
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.136-141
    • /
    • 2000
  • Concrete has been used for many years as a composite material that has excellent mechanical properties and durability for construction. However, concrete ia a poor electrical conductor, especially under dry conditions. Concrete that is excellent in both mechanical and electrical conductivity properties may have important applications in the electrical, electronic, military and construction industry (e.g for de-icing road from snow). The purpose of this investigation is to improve the electrical conductive of cement mortar preparared with graphite as filler. From the test result, as the ratio of graphite/cement increased, fluidity, fluidity and strength decreased but resistivity decreased. The resistivity of electrical conductive cement mortar is effect by water/cement ratio and water content of specimen. From this study, it is enough to assure the use of graphite as a conductive filler for electrical conducive cement mortar.

  • PDF

A study on the Properties of Cement Mortar Containing Electrically Conductive Materials (전기전도성 재료를 혼입한 시멘트 모르타르의 전기적 특성에 관한 연구)

  • 최길섭;소양섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10b
    • /
    • pp.933-938
    • /
    • 2000
  • Concrete has been used for many years as a composite material that has excellent mechanical properties and durability for construction. However, concrete is a poor electrical conductor, especially under dry conditions. Concrete that is excellent in both mechanical and electrical conductivity properties may have important applications in the electrical, electronic, military and construction industry(e.g. for de-icing road from snow). The purpose of this investigation is to improve the electrical conductive of cement mortar preparared with coke dust, graphite, carbon black and carbon fiber as filler. From the test result, as the content of electrically conductive material increased, fluidity and strength decreased but resistivity decreased. The resistivity of electrical conductive cement mortar is effect by water/cement, and aggregate. Cement mortar containing carbon fiber has the best electrical properties considering strength. From this study, it is enough to assure the use of carbon fiber, carbon black and graphite as a conductive filler for electrical conductive cement mortar.

A Study on the Effect of the ICCP System in Reinforced Concrete Specimens of Slab Type

  • Jeong, Jin-A;Ko, Kwon-Heum;Kim, Mun-Su;Lee, Du-Hyeong
    • Corrosion Science and Technology
    • /
    • v.17 no.6
    • /
    • pp.272-278
    • /
    • 2018
  • Reinforced concrete (RC) has been used as a construction material in various environments, such as airports, bridges, and ocean concrete structures, etc. Over time, however, rebar in the concrete is prone to corrosion from environmental forces and structural defects of the concrete. Cathodic protection (CP) was invented to prevent problems with corrosion and is widely used for different applications. Cathodic protection is divided into two types: sacrificial anode cathodic protection (SACP) and impressed current cathodic protection (ICCP). There are several limitations to the use of sacrificial anode cathodic protection in complex reinforced concrete structures, including concrete resistivity, throwing power of the CP, and environmental conditions. These limitations can affect the protection performance of SACP. Therefore, we used impressed current cathodic protection in our study. We tested Ti-Mesh, Ti-Rod, and Ti-Ribbon anodes in slab type reinforced concrete specimens. Electrochemical tests were conducted to confirm the impressed current cathodic protection performance under different environmental conditions.

Influence of Adjacent Structures on Surface-Wave Dispersion Characteristics and 2-D Resistivity Structure (표면파 분산특성과 전기비저항 분포특성에 대한 인접구조물의 영향)

  • Joh, Sung-Ho;Kim, Bong-Chan;Cho, Mi-Ra;Kim, Suhk-Chol;Youn, Dae-Hee;Hong, Jae-Ho
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1318-1327
    • /
    • 2008
  • Geotechnical sites in urban areas may have embedded structures such as utility lines and underground concrete structures, which cause difficulties in site investigation. This study is a preliminary research to establish knowledge base for developing an optimal technique for site investigation in urban areas. Surface-wave method and resistivity survey, which are frequently adopted for non-destructive site-investigation for geotechnical sites, were investigated to characterize effects of adjacent structures. In case of surface wave method, patterns of wave propagation were investigated for typical sets of multi-layered geotechnical profiles by numerical simulation based on forward modeling theory and field experiments for small-size model tests and real-scale tests in the field. In case of resistivity survey, 3-D finite element analyses and field tests were performed to investigate effects of adjacent concrete structures. These theoretical and experimental researches for surface-wave method and resistivity survey resulted in establishing physical criteria to cause interference of adjacent structures in site investigation at urban areas.

  • PDF

Corrosion resistant self-compacting concrete using micro and nano silica admixtures

  • Jalal, Mostafa
    • Structural Engineering and Mechanics
    • /
    • v.51 no.3
    • /
    • pp.403-412
    • /
    • 2014
  • In this paper, enhancement of corrosion and chloride resistance of high performance self compacting concrete (SCC) through incorporating nanosilica into the binder has been investigated. For this purpose, different mixtures were designed with different amounts of silica fume and nano silica admixtures. Different binder contents were also investigated to observe the binder content effect on the concrete properties. Corrosion behavior was evaluated by chloride penetration and resitivity tests. Water absorption and capillary absorption were also measured as other durability-related properties. The results showed that water absorption, capillary absorption and Cl ion percentage decreased rather significantly in the mixtures containing admixtures especially blend of silica fume and nano silica. By addition of the admixtures, resistivity of the SCC mixtures increased which can lead to reduction of corrosion probability.