• Title/Summary/Keyword: Concrete quantitatively

Search Result 220, Processing Time 0.027 seconds

Examination of Color Difference in Elastic Pavement that uses EPDM Chip using Ultraviolet Ray Accelerated Weathering Test (자외선 촉진 내후성 시험에 의한 EPDM Chip을 사용한 탄성포장의 색차분석)

  • Hong, Chang Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.1D
    • /
    • pp.91-98
    • /
    • 2011
  • Recently, the usage of elastic paving using EPDM Chip instead of pedestrian sidewalk blocks or permeable concrete used mostly for pedestrian walk, trails and in parks has been increassed as it can absorb impact during walking and produce wide range of colors and designs. However, the properties of EPDM Chip including elasticity and durability are decreased when exposed to ultraviolet ray and scenic paving functions through various colors are lowered due to the yellowing phenomenon. In this study, ultraviolet ray accelerated weathering test has been conducted to analyze the color changes in EPDM Chip and polyurethane resin, which are the main ingredients of elastic paving, when exposed to ultraviolet ray. The color differences are quantitatively analyzed through the color value coordination of the colored space by using the color difference scheme. The experimental results show that the color changes in BL polyurethane resin which is used most frequently at present was larger than that of EPDM Chip. Moreover, the total color difference, ${\Delta}E$, of BC polyurethane resin are 3.162 on the $14^{th}$ day of commencement of acceleration, which is 6 times greater color change resistance against ultraviolet ray than that of BL polyurethane resin with total color difference of 20.639. Therefore, the usage of BC polyurethane resin, which is manufactured to have chain-type molecular structure by using the isocyanate as the HMDI at the time of producing polymer, as binder in elastic paving with EPDM Chip is found to be a highly efficient method of restraining the color changes due to the ultraviolet ray.

Improvement in University Freshmen's Questioning by Explicit Practice of Experts' Physics Problem Solving Strategies (전문가의 물리 문제 풀이 방략 가시화 연습에 의한 대학생의 질문 향상)

  • Kim, Eun-Sook;Pak, Sung-Jae
    • Journal of The Korean Association For Science Education
    • /
    • v.22 no.3
    • /
    • pp.466-477
    • /
    • 2002
  • It was proposed that proper problem solving practice should improve students' questioning in physics. In the previous researches, improvement in students' questioning was observed after practice of making questions given the examples of desirable questions. In this study, the problem solving strategies used by experts were introduced to students in the form of step-by-step guide to follow in problem solving practice. The directions in the guide were concrete and operational for students to understand the expected behaviors explicitly. It was assumed that students could pinpoint the difficulty specifically through this guide, which would result in positive effects on students' recognition and expression of their own questions. The subjects in this study were college freshmen enrolled in the introductory physics for science or engineering major. The physics problems from the textbook were solved and practiced in the traditional way for controlled group. Worksheets designed to follow experts' problem solving strategies were used for the experimental group. Two groups were taught in the same way during lecture part of the class. Students were asked to describe the difficulties they had during homeworks or tests. Questions in this study means these descriptions written by students although they were not necessarily in the form of interrogative sentences. The questions were analyzed both in quantity and quality. Quantitatively, more students spontaneously turned in their questions in the experimental group than in the controlled group. Regarding the quality, there were more students in the experimental group than in the controlled group who described their difficulties in detail or recognized the need for the procedural knowledge.

Load Transfer Mechanism of Drilled Shafts in Weathered Rock (풍화된 암반에 근입된 현장타설말뚝의 하중전이기구)

  • ;Cho Sung-Min;Jung Sung-Jun;Kim Myoung-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.5
    • /
    • pp.187-196
    • /
    • 2005
  • Since the allowable bearing capacities of piles in weathered/fractured rock are mainly governed by settlement, the load-displacement behavior of pile should be known accurately. To predict pile head settlement at the design stage, the exact understanding of the load-transfer mechanisms is essential. Therefore, in this research, the load-transfer mechanism of drilled shaft socketed into weathered rock was investigated. For the investigation, five cast-in-place concrete piles with diameters of 1,000 mm were socketed into weathered gneiss. The static axial load tests and the load-transfer measurements were performed to examine the axial resistant behavior of the piles. A comprehensive field/laboratory testing program on weathered rock at the Held test sites was also performed to describe the in situ rock mass conditions quantitatively. And then, the effect of rock mass condition on the load transfer mechanism was investigated. The f-w (side shear resistance-displacement) curve of the pile in moderately weathered rock reached to yielding point at a for millimeter displacements, and after yielding point, the rate of resistance increment dramatically decreased. However, the f-w curve in the highly/completely weathered rock did not show the obvious yielding point, and the resistance gradually increased showing the hyperbolic pattern until relatively high displacement (>15 mm). The q-w (end bearing resistance-displacement) curves showed linear response at least until the base displacement of approximately 10 mm, regardless of rock mass conditions.

Development of an Measuring System for Pulse Wave Corresponding to Different Radial Artery Diameters Caused by Indentation (요골동맥 직경 변화에 따른 맥파 측정 시스템 개발)

  • Lee, Jeon;Woo, Young-Jae;Jeon, Young-Ju;Lee, Yu-Jung;Kim, Jong-Yeol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.12
    • /
    • pp.2351-2357
    • /
    • 2008
  • Noninvasive radial artery pulse wave has been widely used not only for the pulse wave analysis(PWA) itself but also for assessment of arterial stiffness with estimated aortic pulse wave from peripheral pulse wave. However, it has been found that the deformation of pulse shape can be caused readily by changing measuring position, indentation pressure, and so on. So, in this study, we have developed a system which can measure radial pulse wave and skin displacement simultaneously while the indentation body goes down to occlude subject's radial artery. This system can be divided into a measuring apparatus part, an indentation control hardware part, a data acquisition part and a control and computation part. And, the measuring apparatus consists of an arm-rest, a step motor, an indentation body, a laser displacement sensor(LK-G30, Keyence Co.) and pulse wave sensor. Under load-free condition and radial artery loaded condition, the evaluation of developed system has been performed. From these results, we can conclude: 1) The developed system can control the indentation body quantitatively and the adopted laser displacement sensor shows linear output characteristic even with skin as a reflector. 2) This system can measure the pulse wave and the displacement of indentation body, that is, skin displacement simultaneously at each specific level of indentation body. 3) This system can provide the number of motor steps used to get down the indentation body, the measured skin displacement, the calculated indentation pressure, the calculated pulse pressure and the pulse waveform as well as the information generated by combining these with each others. 4) This system can reveal the relationship between the morphological changes of pulse wave and the estimated displacement of radial artery wall by indentation. Consequently, the developed system can furnish more abundant information on radial artery than previous diagnosis systems based on tonometric measurement. In further study, we expect to setup the standard measuring process and to concrete the algorithm for the estimation of radial artery's diameter and of displacement of radial artery's wall. Furthermore, with well designed clinical studies, we hope to turn out the usefulness of developed system in the field of cardiovascular system evaluation.

An Empirical Study for Cost Saving Effect Analysis When Using Seismic Reinforcing Bar (내진 보강용 철근 사용 시 비용 절감 효과 분석을 위한 실증적 연구)

  • Lee, Jong-Sik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.4
    • /
    • pp.120-127
    • /
    • 2016
  • Due to the enlargement and high-rise of reinforced concrete structure, the application of high functional material is required. However, high-strength bar is recently introduced to the country and the material is insufficient to measure the variation of quantity of rebar quantitatively when using high-strength bar. For these reasons, this study is to provide useful data in cost decision making when applying high-strength bar at a stage of architectural project planning. For residence-commerce complex buildings, we set up six types of conditions such as in case of using only rebar, in case of using only high-strength bar, in case of using rebar mixed with high-strength bar and so on. With the standard of study model 1 that applies only SD400 regardless of rebar diameter, the analyzed result of rebar variation and the cost change of construction in other study model is as follows. When the rebar amount and cost in study model I was 100%, each ratio was 88.3% and 90.5% in study model II, 80.2% and 83.4% in study model III, 91.9% and 93.5% in study model IV, 88.9% and 87.7% in study model V and 82.4% and 85.5% in study model VI. Therefore, in case of rebar amount and construction cost, study model III was evaluated as the best that was applied only SD600.

Study on the Environmental Quality Assessment of River Revetment Technique by Life-Cycle-Assessment (전과정 평가에 의한 하천 호안 공법의 환경성 평가에 관한 연구)

  • Kim, Kook-Il;Ahn, Won-Sik
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.6 s.179
    • /
    • pp.485-494
    • /
    • 2007
  • This study was performed to evaluate the environmental qualities of the revetment construction methods and the river-facility materials using Life-Cycle-Assessment(LCA) for the nature-friendly design of close-to-nature river, The investigation results on the environmental qualities of energy and materials used to the close-to-nature river plan showed that the environmental impacts per unit weight increased in the order of gasoline > diesel > cement > wood. The environmental impacts per unit area of revetment construction method exhibited that the environmental loadings increased in the order of gabion > revetment > cribwork. In addition, it was observed that the environmental impact was reduced by improving the materials of zinc-galvanized wire. The model basin investigated in this study was the $0.3km^2$ area of river improvement works in Kyung stream, which is a tributary to the Seomjin river and the second regional stream. The research was conducted based on the 30years by life expectancy of artificial facilities. For the comparisons of revetment techniques with respect to the environmental qualities, the method resulted in the highest environmental loadings. The method using ready-mixed concrete ranked second in the environmental loadings of revetment techniques. The present results of this study are expected to play a beneficial role in the nature-friendly design of close-to-nature river by quantitatively identifying the environmental quality of total procedures (i.e., combination of techniques, selection of river-facility materials, maintenance of river-facility) applied to close-to-nature river plan.

Side Shear Resistance of Drilled Shafts in Weathered Rock (풍화된 암반에 근입된 현장타설말뚝의 주면지지력)

  • Kwon, Oh Sung;Kim, Myoung Mo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4C
    • /
    • pp.205-212
    • /
    • 2008
  • In this research, the effect of rock mass weathering on the side shear resistance of drilled shaft socketed into igneous-metamorphic rock was investigated. For that, 23 cast-in-place concrete piles with diameters varying from 400mm to 1,500mm were constructed at four different sites, and the static axial load tests were performed to examine the resistant behavior of the piles. A comprehensive field/laboratory testing program at the field test site was also performed to describe the in situ rock mass conditions quantitatively. The side shear resistance of rock socketed piles was found to have no intimate correlation with the compressive strength of the intact rock. However, the global rock mass strength, which was calculated by the Hoek and Brown criteria, was found to closely correlate to the side shear resistance. The ground investigation data regarding the rock mass conditions (e.g. $E_m$, $E_{ur}$, $p_{lm}$, RMR, RQD, j) were also found to be highly correlated with the side shear resistance, showing the coefficients of correlation greater than 0.75 in most cases. Additionally, the applicability of existing methods for the side shear resistance of weathered granite-gneiss was verified by comparison with the field test data. The existing methods which consider the effect of rock mass condition were modified and/or extended for weathered rock mass where mass factor j is lower than 0.15, and RQD is below 50%.

Development of GIS based Water Quality Simulation System for Han River and Kyeonggi Bay Area (한강과 경기만 지역 GIS 기반 통합수질모의 시스템 개발)

  • Lee, Chol-Young;Kim, Kye-Hyun
    • Journal of Korea Spatial Information System Society
    • /
    • v.10 no.4
    • /
    • pp.77-88
    • /
    • 2008
  • There has been growing demands to manage the water quality of west coastal region due to the large scale urbanization along the coastal zone, the possibility of application of TMDL(Total Maximum Daily Loadings) to Han river, and the natural disaster such as oil spill incident in Taean, Chungnam. However, no system has been developed for such purposes. In this background, the demand of GIS based effective water quality management has been increased to monitor water quality environment and propose best management alternatives for Han river and Kyeonggi bay. This study mainly focused on the development of integrated water quality management system for Han river bas in and its estuary are a connected to Kyeonggi bay to support integrated water quality management and its plan. Integration was made based on GIS by spatial linking between water quality attributes and location information. A GIS DB was built to estimate the amount of generated and discharged water pollutants according to TMDL technical guide and it included input data to use two different water quality models--W ASP7 for Han river and EFDC for coastal area--to forecast water quality and to suggest BMP(Best management Practices). The results of BOD, TN, and TP from WASP7 were used as the input to run EFDC. Based on the study results, some critical areas which have relatively higher pollutant loadings were identified, and it was also identified that the locations discharging water pollutant loadings to river and seasonal factor affected water quality. And the relationship of water quality between river and its estuary area was quantitatively verified. The results showed that GIS based integrated system could be used as a tool for estimating status-quo of water quality and proposing economically effective BMPs to mitigate water pollution. Further studies need to be made for improving system's capabilities such as adding decision making function as well as cost-benefit analysis, etc. Also, the concrete methodology for water quality management using the system need to be developed.

  • PDF

Impact Evaluation of Water Footprint on Stages of Drainage Works (배수공 각 작업 단계별 물발자국 영향평가)

  • Chen, Di;Kim, Joon-Soo;Batagalle, Vinuri;Kim, Byung-Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.40 no.2
    • /
    • pp.225-231
    • /
    • 2020
  • Fresh water that can be used by a person of the total amount of water on the planet is increased because it is less than 0.01 % except underground water, ice and snow, etc. water management response need. In order to protect and efficiently utilize water resources, major countries are conducting water footprint studies that can quantitatively estimate the amount of water put into the operating phase of the resource harvesting phase, mainly agriculture. Korea has also recently developed a number of policies in order to cope with water shortages, and in the construction industry, as well as the need for basic research to support it has been emphasized. This study was constructed DB up to the raw material harvesting step, the transport step, the production stage in order to estimate the water consumption of resources to be put into the work process to target the drainage of the road. Water usage estimation method was utilized the method presented in the Water Footprint Manual and the environmental score card certification guide, unit water usage each drainage main method was calculated after estimating the water footprint considering the water character factor, indirect water and the direct water, the water consumption factor of material input to each process. Brown asphalt, rebar, remicon of the drainage material as a result of the water footprint calculation accounted for 97 % of the total. Drainage method is a culvert, a side channel, a culvert wing wall, reinforced concrete open channel accounted for 92.2 % of the total. Drainage total step-by-step calculated water consumption and water footprint was found in order of raw material harvesting step, transport stage, production stage. Water footprint each drainage method or total drainage material calculated in this study can be used as a base data in the agricultural and construction sectors. In order to increase the reliability of the analysis, it is believed that further overseas databases will be needed for continuous review and research.

Wetting-Induced Collapse in Fill Materials for Concrete Slab Track of High Speed Railway (고속철도 콘크리트궤도 흙쌓기재료의 Wetting Collapse에 관한 연구)

  • Lee, Sung-Jin;Lee, Il-Wha;Im, Eun-Sang;Shin, Dong-Hoon;Cho, Sung-Eun
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.4
    • /
    • pp.79-88
    • /
    • 2008
  • Recently, the high speed railway comes into the spotlight as the important and convenient traffic infrastructure. In Korea, Kyung-Bu high speed train service began in bout 400 km section in 2004, and the Ho-Nam high speed railway will be constructed by 2017. The high speed train will run with a design maximum speed of 300-350 km/hr. Since the trains are operated at high speed, the differential settlement of subgrade under the rail is able to cause a fatal disaster. Therefore, the differential settlement of the embankment must be controlled with the greatest care. Furthermore, the characteristics and causes of settlements which occurred under construction and post-construction should be investigated. A considerable number of studies have been conducted on the settlement of the natural ground over the past several decades. But little attention has been given to the compression settlement of the embankment. The long-term settlement of compacted fills embankments is greatly influenced by the post-construction wetting. This is called 'hydro collapse' or 'wetting collapse'. In spite of little study for this wetting collapse problem, it has been recognized that the compressibility of compacted sands, gravels and rockfills exhibit low compressibility at low pressures, but there can be significant compression at high pressures due to grain crushing (Marachi et al. 1969, Nobari and Duncan 1972, Noorany et al. 1994, Houston et al. 1993, Wu 2004). The characteristics of compression of fill materials depend on a number of factors such as soil/rock type, as-compacted moisture, density, stress level and wetting condition. Because of the complexity of these factors, it is not easy to predict quantitatively the amount of compression without extensive tests. Therefore, in this research I carried out the wetting collapse tests, focusing on various soil/rock type, stress levels, wetting condition more closely.