• 제목/요약/키워드: Concrete model

Search Result 5,382, Processing Time 0.042 seconds

Tensile Creep Model of Concrete Incorporation the Effects of Humidity and Time at Loading (재하시 재령과 습도의 영향을 고려한 콘크리트의 합리적인 인장크리프 모델)

  • 이형준;오병환
    • Journal of the Korea Concrete Institute
    • /
    • v.11 no.4
    • /
    • pp.3-11
    • /
    • 1999
  • The creep characteristics of concrete under tensile stress has been usually assumed to have the same characteristics as that under compressive stress in the time-dependent analysis of concrete structures. However, it appears from the recent experimental studies that tensile creep behavior is much different from compressive one. In particular, high sustaining tensile stress may cause time-dependent cracking and thus lead to tensile failure. It is, therefore, necessary to model the tensile creep behavior accurately for realistic time-dependent analysis of concrete structures. The present paper to have been focused to suggested more realistic model for the tensile creep behavior of concrete. The models are compared with tensile creep test data available in the literature. The proposed model may allow more refined analysis of concrete structures under time-dependent loading.

Mesoscale model for cracking of concrete cover induced by reinforcement corrosion

  • Chen, Junyu;Zhang, Weiping;Gu, Xianglin
    • Computers and Concrete
    • /
    • v.22 no.1
    • /
    • pp.53-62
    • /
    • 2018
  • Cracking of concrete cover induced by reinforcement corrosion is a critical issue for life-cycle design and maintenance of reinforced concrete structures. However, the critical degree of corrosion, based on when the concrete surface cracks, is usually hard to predict accurately due to the heterogeneity inherent in concrete. To investigate the influence of concrete heterogeneity, a modified rigid-body-spring model, which could generate concrete sections with randomly distributed coarse aggregates, has been developed to study the corrosion-induced cracking process of the concrete cover and the corresponding critical degree of corrosion. In this model, concrete is assumed to be a three-phase composite composed of coarse aggregate, mortar and an interfacial transition zone (ITZ), and the uniform corrosion of a steel bar is simulated by applying uniform radial displacement. Once the relationship between radial displacement and degree of corrosion is derived, the critical degree of corrosion can be obtained. The mesoscale model demonstrated its validity as it predicted the critical degree of corrosion and cracking patterns in good agreement with analytical solutions and experimental results. The model demonstrates how the random distribution of coarse aggregate results in a variation of critical degrees of corrosion, which follows a normal distribution. A parametric study was conducted, which indicates that both the mean and variation of critical degree of corrosion increased with the increase of concrete cover thickness, coarse aggregates volume fraction and decrease of coarse aggregate size. In addition, as tensile strength of concrete increased, the average critical degree of corrosion increased while its variation almost remained unchanged.

Early Age Cracking Analysis of Massive Concrete Base Slab with Enhanced Microplane Model (개선된 미소면 모델을 적용한 매스콘크리트 기초슬래브의 초기균열거동 해석)

  • Lee, Yun;Kim, Jin-Keun;Woo, Sang-Kyun;Song, Young-Chul;Yi, Seong-Tae
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.458-461
    • /
    • 2006
  • Early age cracking of concrete is a widespread and complicated problem, and diverse applications in practical engineering have focused on this issue. Since massive concrete base slab composes the infrastructure of other concrete structures such as pier, concrete dam, and high rise buildings, early age cracking of that is considered as a crucial problem. In this study, finite element analysis (FEA) implemented with the age-dependent microplane model was performed. For a massive concrete base slab, cracking initiation and propagation, and deformation variation were investigated with concrete age. In massive concrete slab, autogenous shrinkage increases the risk of early age cracking and it reduces reinforcement effect on control of early age cracking. Gradual crack occurrence is experienced from exterior surface towards interior of the slab in case of combined hydration heat and autogenous shrinkage. FEA implemented with enhanced microplane model successfully simulates the typical cracking patterns due to edge restraint in concrete base slab.

  • PDF

Analytical model for CFRP strengthened circular RC column under elevated temperature

  • Rashid, Raizal S.M.;Aboutaha, Riyad S.
    • Computers and Concrete
    • /
    • v.13 no.4
    • /
    • pp.517-529
    • /
    • 2014
  • In order to increase the load carrying capacity and/or increase the service life of existing circular reinforced concrete bridge columns, Carbon Fiber Reinforced Polymer (CFRP) composites could be utilized. Transverse wrapping of circular concrete columns with CFRP sheets increases its axial and shear strengths. In addition, it provides good confinement to the concrete column core, which enhances the bending and compressive strength, as well as, ductility. Several experimental and analytical studies have been conducted on CFRP strengthened concrete cylinders/columns. However, there seem to be lack of thorough investigation of the effect of elevated temperatures on the response of CFRP strengthened circular concrete columns. A concrete confinement model that reflects the effects of elevated temperature on the mechanical properties of CFRP composites, and the efficiency of CFRP in strengthened concrete columns is presented. Tensile strength and modulus of CFRP under hot conditions and their effects on the concrete confinement are the primary parameters that were investigated. A modified concrete confinement model is developed and presented.

Electrical Impedance Response Model of Concrete in Setting Process (응결 과정 콘크리트의 전기 임피던스 응답 해석 모델)

  • Shin, Sung Woo;Hwang, Garam;Lee, Chang Joon
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.5
    • /
    • pp.116-122
    • /
    • 2014
  • Assessment of setting process of concrete is important as it provides useful information to schedule concreting work in construction site. Electrical impedance measurement method, which utilizes the change of electrical resistance of concrete, has been applied to assess setting process of cement-based materials. However, the applicability of the method has been demonstrated only for cement paste and mortar. The main purpose of this research is to develop the electrical impedance based setting process assessment for concrete. To this end, electrical impedance response model for concrete should be developed in advance since it is essential to estimate the electrical resistance of concrete from measured impedance response. The electrical resistance of concrete is a key parameter for the setting process assessment. In this study electrical impedance responses of the concrete in setting process are measured and analyzed. Thereby, an electrical impedance response model of the liquid state concrete is developed and schematically validated.

Research on damage of 3D random aggregate concrete model under ultrasonic dynamic loading

  • Wang, Lixiao;Chen, Qidong;Liu, Xin;Zhang, Bin;Shen, Yichen
    • Computers and Concrete
    • /
    • v.26 no.1
    • /
    • pp.11-20
    • /
    • 2020
  • Concrete are the most widely used manmade materials for infrastructure construction across the world. These constructions gradually aged and damaged due to long-term use. However, there does not exist an efficient concrete recycling method with low energy consumption. In this study, concrete was regarded as a heterogeneous material composed of coarse aggregate and cement mortar. And the failure mode of concrete under ultrasonic dynamic loading was investigated by finite element (FE) analysis. Simultaneously, a 3D random aggregate concrete model was programmed by APDL and imported into ABAQUS software, and the damage plastic constitutive model was applied to each phase to study the damage law of concrete under dynamic loading. Meanwhile, the dynamic damage process of concrete was numerically simulated, which observed ultrasonic propagating and the concrete crushing behavior. Finally, the FE simulation considering the influence of different aggregate volume and aggregate size was carried out to illustrate the damage level of concrete.

Damage-based stress-strain model of RC cylinders wrapped with CFRP composites

  • Mesbah, Habib-Abdelhak;Benzaid, Riad
    • Advances in concrete construction
    • /
    • v.5 no.5
    • /
    • pp.539-561
    • /
    • 2017
  • In this study, the effects of initial damage of concrete columns on the post-repair performance of reinforced concrete (RC) columns strengthened with carbon-fiber-reinforced polymer (CFRP) composite are investigated experimentally. Four kinds of compression-damaged RC cylinders were reinforced using external CFRP composite wraps, and the stress-strain behavior of the composite/concrete system was investigated. These concrete cylinders were compressed to four pre-damaged states including low -level, medium -level, high -level and total damage states. The percentages of the stress levels of pre-damage were, respectively, 40, 60, 80, and 100% of that of the control RC cylinder. These damaged concrete cylinders simulate bridge piers or building columns subjected to different magnitudes of stress, or at various stages in long-term behavior. Experimental data, as well as a stress-strain model proposed for the behavior of damaged and undamaged concrete strengthened by external CFRP composite sheets are presented. The experimental data shows that external confinement of concrete by CFRP composite wrap significantly improves both compressive strength and ductility of concrete, though the improvement is inversely proportional to the initial degree of damage to the concrete. The failure modes of the composite/damaged concrete systems were examined to evaluate the benefit of this reinforcing methodology. Results predicted by the model showed very good agreement with those of the current experimental program.

The Similitude of Material for Small-Scale Model Mix Proportion of Concrete Pavement (시멘트콘크리트 포장체의 거동연구를 위한 축소모델 배합의 재료적 상사성)

  • Ko, Young-Zoo;Lee, Yeoung-Woo;Bae, Ju-Seong
    • Magazine of the Korea Concrete Institute
    • /
    • v.11 no.2
    • /
    • pp.139-145
    • /
    • 1999
  • The objective of this study is to provide the information on the small-scale model mix proportion when the behavior of prototype concrete pavement is studied through small-scale model experiments. However it is difficult to obtain a model material to simulate the prototype concrete by scaling the individual components according to the laws of similitude. In this paper, the stress-strain behavior in uniaxial compression is used as a means to correlate material similitude between the prototype and the model concrete. Based on the results of experiments, we compared the stress-strain curves of prototype and model concrete mixes using a nondimensional basis. In order to simulate the stress-stain curves of prototype concrete, it is important that various mix proportions of model concrete selected properly which are varied from aggregate grading, cement-aggregate and sand-aggregate ratio.

Reliability analysis of proposed capacity equation for predicting the behavior of steel-tube concrete columns confined with CFRP sheets

  • Raza, Ali;Khan, Qaiser uz Zaman;Ahmad, Afaq
    • Computers and Concrete
    • /
    • v.25 no.5
    • /
    • pp.383-400
    • /
    • 2020
  • Due to higher stiffness to weight, higher corrosion resistance, higher strength to weight ratios and good durability, concrete composite structures provide many advantages as compared with conventional materials. Thus, they have wide applications in the field of concrete construction. This research focuses on the structural behavior of steel-tube CFRP confined concrete (STCCC) columns under axial concentric loading. A nonlinear finite element analysis (NLFEA) model of STCCC columns was simulated using ABAQUS which was then, calibrated for different material and geometric models of concrete, steel tube and CFRP material using the experimental results from the literature. The comparative study of the NLFEA predictions and the experimental results indicated that the proposed constitutive NLFEA model can accurately predict the structural performance of STCCC columns. After the calibration of NLFEA model, an extensive parametric study was performed to examine the effects of different critical parameters of composite columns such as; (i) unconfined concrete strength, (ii) number of CFRP layers, (iii) thickness of steel tube and (iv) concrete core diameter, on the axial load capacity. Furthermore, a large database of axial strength of 700 confined concrete compression members was developed from the previous researches to give an analytical model that predicts the ultimate axial strength of composite columns accurately. The comparison of the predictions of the proposed analytical model was done with the predictions of 216 NLFEA models from the parametric study. A close agreement was represented by the predictions of the proposed constitutive NLFEA model and the analytical model.

Elasto-Plastic Anisotropic-Damage Model for Concrete (콘크리트의 탄-소성 이방성-손상 모델)

  • 이기성;송하원
    • Computational Structural Engineering
    • /
    • v.9 no.1
    • /
    • pp.65-76
    • /
    • 1996
  • The initiation and growth of microcracks or microvoids inside concrete results in the progressive degradation of concrete. This damage processing along processing along with plastic deformation is main cause of nonlinear behavior of concrete. In this study, a continuum damage model of concrete is developed for the analysis of the nonlinear behavior of concrete due to damage and elasto-plastic deformation. Anisotropic damage tensor is used to describe the anisotropy of concrete and hypothesis of equivalent elastic energy is used to define the effective elastic tensor. The damage model including the damage evolution law and constitutive equation is derived with damage variable and damage surface which is defined by damage energy release rate by using the Helmholtz free energy and dissipation potential based on the thermodynamic principles. By adopting a typical plasticity model of concrete, plasticity of concrete is included to this model. Afinite element analysis program implemented with this model was developed and finite element analysis was performed for the analyses of concrete subjected to uniaxial and biaxial loadings. Comparison of the results of analysis with those of experiments and other models shows that the model successfully predicts the nonlinear behavior of concrete.

  • PDF