• Title/Summary/Keyword: Concrete member with GFRP bars

Search Result 8, Processing Time 0.022 seconds

Numerical modelling of circular reinforced concrete columns confined with GFRP spirals using fracture-plastic model

  • Muhammad Saad Ifrahim;Abdul Jabbar Sangi;Shuaib H. Ahmad
    • Computers and Concrete
    • /
    • v.31 no.6
    • /
    • pp.527-536
    • /
    • 2023
  • Fiber Reinforced Polymer (FRP) bar has emerged as a viable and sustainable replacement to steel in reinforced concrete (RC) under severe corrosive environment. The behavior of concrete columns reinforced with FRP bars, spirals, and hoops is an ongoing area of research. In this study, 3D nonlinear numerical modelling of circular concrete columns reinforced with Glass Fiber Reinforced Polymer (GFRP) bars and transversely confined with GFRP spirals were conducted using fracture-plastic model. The numerical models and experimental results are found to be in good agreement. The effectiveness of confinement was accessed through von-mises stresses, and it was found that the stresses in the concrete's core are higher with a 30 mm pitch (46 MPa) compared to a 60 mm pitch (36 MPa). The validated models are used to conduct parametric studies. In terms of axial load carrying capacity and member ductility, the effect of concrete strength, spiral pitch, and longitudinal reinforcement ratio are thoroughly investigated. The confinement effect and member ductility of a GFRP RC column increases as the spiral pitch decreases. It is also found that the confinement effect and member ductility decreased with increase in strength of concrete.

Tension Stiffening Effect in Axially loaded Concrete Member Oncrete Member (축방향 인장을 받는 콘크리트 부재의 FRP 보강근의 인장강화 효과)

  • Nak Sup Jang;Chi Hoon Nho;Hongseob Oh
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.6
    • /
    • pp.47-54
    • /
    • 2023
  • In this study, the tensile behavior of concrete specimens reinforced with GFRP (Glass Fiber Reinforced Polymer), BFRP (Basalt Fiber Reinforced Polymer), and CFRP (Carbon Fiber Reinforced Polymer) bars was experimentally analyzed. The tensile strength of the FRP bars is appeared to be similar to the design strength, but the elastic modulus was somewhat lower. Additionally, the specimens for tension stiffening effect were manufacured using OPC (Ordinary Portland Cement) and SFRC (Steel Fiber Reinforced Concrete), with dimensions of 150(W)×150(B)×1000(H) mm. The crack spacing of specimens was most significant for GFRP reinforcement bars, which have a lower elastic modulus and a smoother surface, while BFRP and CFRP bars, with somewhat rougher surfaces and higher elastic moduli, showed similar crack spacings. In the load-strain relationship, GFRP bars exhibited a relatively abrupt behavior after cracking, whereas BFRP and CFRP bars showed a more stable behavior after the cracking phase, maintaining a certain level of tension stiffening effect. The tension stiffening index was somewhat smaller as the diameter increased, and GFRP, compared to BFRP, showed a higher tension stiffening index.

Study of Application of Salt Resistance Concrete Beam Reinforced with Glass Fiber Reinforced Polymer-Ribbed Bar as a Member of Marine Structure (GFRP 보강 내염성 콘크리트 보의 해양구조부재로서의 적용성 검토)

  • Kim, Chung-Ho;Hwang, Yun-Hee
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.5
    • /
    • pp.94-99
    • /
    • 2008
  • Three types of salt resistant concrete beams reinforced with glass fiber reinforced polymer-ribbed bars (GFRP-ribbed bars) were selected, and their applicable properties were investigated with the goal of improving the problem of capacity deterioration in marine structures due to sea water corrosion. In this study, the structural behaviors were similar to RC beams in relation to the development of the strength and stiffness up to the generation of the initial crack. After the growth of this initial crack, the structural properties decreased owing to a sudden loss of bond strength. Also these beams showed the trends of brittle failure. As a result, it was confirmed that a GFS beam replaced with Fly Ash (20%) and Silica Fume (5%) has the best application as a marine structural element.

Technical Trend of Concrete Member with GFRP Bar and Tension Stiffening Effect (GFRP 보강근 배근 콘크리트 기술동향 및 인장강화 효과 분석)

  • Won-Jun Lee;Seong-Cheol Lee;Jung-Woo Cho
    • Tunnel and Underground Space
    • /
    • v.34 no.5
    • /
    • pp.433-448
    • /
    • 2024
  • Steel rebar is commonly used as reinforcement in reinforced concrete (RC) structures. However, steel rebar corrodes over time, leading to a significant reduction in structural safety as the structure ages. Therefore, Glass Fiber Reinforced Plastic (GFRP) rebar, which is not prone to corrosion, has gained attention as a replacement for conventional steel reinforcement. This study investigates the fundamental technology required for applying GFRP rebar to concrete members. Based on this, the bond behavior and tension stiffening effect of GFRP-reinforced members were analyzed. The analysis revealed that key properties of GFRP rebar, such as bond behavior, rebar diameter, and reinforcement ratio, are major factors influencing the tension stiffening effect. To further expand the application of GFRP rebar,it is expected that a new model that accurately reflects the tension stiffening effect will be required.

Behavior of High Strength Concrete Beams with Hybrid Flexural Reinforcements (하이브리드 휨 보강 고강도 콘크리트 보의 성능 평가)

  • Yang, Jun-Mo;Min, Kyung-Hwan;Kim, Young-Woo;Yoon, Young-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.13-16
    • /
    • 2008
  • In a tension-controlled section, all steel tension reinforcement is assumed to yield at ultimate when using the strength design method to calculate the nominal flexural strength of members with steel reinforcement arranged in multiple layers. Therefore, the tension force is assumed to act at the centroid of the reinforcement with a magnitude equal to the area of tension reinforcement times the yield strength of steel. Because FRP materials have no plastic region, the stress in each reinforcement layer will vary depending on its distance from the neutral axis. Similarly, if different types of FRP bars are used to reinforce the same member, the stress level in each bar type will vary, and the member will show different behavior from our expectation. In this study, six high-strength concrete beam specimens reinforced with conventional steels, CFRP bars, and GFRP bars as flexural reinforcements were constructed and tested. The members reinforced with hybrid reinforcements showed higher stiffness, smaller crack width, and better ductility than the members reinforced with single type of FRP bars.

  • PDF

On strain measurement of smart GFRP bars with built-in fiber Bragg grating sensor

  • Ju, Minkwan;Park, Kyoungsoo;Moon, Doyoung;Park, Cheolwoo;Sim, Jongsung
    • Structural Engineering and Mechanics
    • /
    • v.65 no.2
    • /
    • pp.155-162
    • /
    • 2018
  • A smart glass fiber reinforced polymer (SMFRP) reinforcing bar with a fiber Bragg grating (FBG) sensor was fabricated using a pultrusion technique, while ribs were formed to improve bonding between concrete and SMFRP. Then, strain of SMFRP bars were measured for a uniaxial tension test of an SMFRP bar, and a four-point bending test of concrete beams reinforced with SMFRP bars. The results of a uniaxial tension test illustrate that the strain obtained from an FBG sensor agrees well with that obtained from electrical resistance strain gauge (ERSG). Additionally, concrete beams reinforced with SMFRP bars were fabricated, and actual flexural test were performed while the strain of with an FBG sensor was compared with that of ERSG. The experimental results demonstrate that SMFRP bars can be used as reinforcement of concrete member while providing deformation information. Furthermore, SMFRP bars may provide stronger durability and smart monitoring to reinforced concrete members under corrosive environments during a service life.

Creep Behavior of Pultruded Ribbed GFRP Rebar and GFRP Reinforced Concrete Member (인발성형된 이형 GFRP 보강근과 GFRP 보강 콘크리트 부재의 크리프 거동)

  • You, Young-Jun;Park, Young-Hwan;Kim, Hyung-Yeol;Choi, Jin-Won;Kim, Jang-Ho Jay
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.2
    • /
    • pp.187-194
    • /
    • 2013
  • Fiber reinforced polymer (FRP) has been gathering interest from designers and engineers for its possible usage as a replacement reinforcement of a steel reinforcing bar due to its advantageous characteristics such as high tensile strength, non-corrosive material, etc. Since it is manufactured with various contents ratios, fiber types, and shapes without any general specification, test results for concrete members reinforced with these FRP reinforcing bars could not be systematically used. Moreover, since investigations for FRP reinforced members have mainly focused on short-term behavior, the purpose of this study is to evaluate long-term behaviors of glass FRP (GFRP) reinforcing bar and concrete beams reinforced with GFRP. In this paper, test results of tensile and bond performance of GFRP reinforcing bar and creep behavior are presented. In the creep tests, results showed that 100 years of service time can be secured when sustained load level is below 55% of tensile strength of GFRP reinforcing bar. A modification factor of 0.73 used to calculate long-term deflection of GFRP reinforced beams was acquired from the creep tests for GFRP reinforced concrete beams. It is expected that these test results would give more useful information for design of FRP reinforced members.

Experimental Verification of Reinforced Concrete Beam with FRP Rebar (FRP 보강콘크리트 보의 휨거동에 관한 실험적 연구)

  • Oh, Hong Seob;Ahn, Kwan-Yeol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.3
    • /
    • pp.93-100
    • /
    • 2008
  • The use of fiber reinforced polymer (FRP) composites is significantly growing in construction and infrastructure applications where durability under harsh environmental conditions is of great concern. In order to examine the applicability of FRP rebar as a reinforcement in flexural member, flexural tests were conducted. 12 beams with different FRP materials such as CFRP, GFRP and Hybrid FRP and reinforcement ratio were tested and analyzed in terms of failure mode, moment-deflection, flexural capacity, ductility index and sectional strain distribution. The test results were also compared with the theoretical model represented in ACI 440.1R06. Test results indicate that the flexural capacity of the beams reinforced by FRP bars can be accurately predicted using the ultimate design theory. They also show that the current ACI model for computing the deflection overestimates the actual deflection of GFRP series and underestimates the deflection of CFRP series.